secure routing protocols
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 17)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 10 (4) ◽  
pp. 1-13
Author(s):  
Idrees Sarhan Kocher

Wireless Sensor Networks (WSN) is now an evolving technology and has a broad range of applications, such as battlefield surveillance, traffic surveillance, detection of forest fires, detection of floods, etc. The communication nature of the wireless sensor network is unprotected and dangerous due to deployment in hostile environments, restricted resources, an automatic nature, and untrusted media for broadcast transmission. For wireless sensor networks, several routing protocols have been suggested, but none of them have been developed with protection as a target. The majority function in routing algorithms currently in place for sensor networks optimize a restricted capacities in sensor nodes and the application based design of WSNs. A WSNs, however, are exposed to a number of possible threats that impede the network's regular activity. Thus, there is a strong need to provide the routing protocols of the OSI structure layer with a safe mechanism to prevent an attacker from obstructing it.   The well-known attacks against all layers are discussed in this systematic roadmap, and debilitating attacks against routing protocols are analyzed and defined in particular. Several suggested attack countermeasures, design considerations and paper contributions are also included in the routing protocols. The assertion of the study is that WSN routing protocols must be built with protection in mind, and this is the only efficient solution in WSNs for safe routing. The aim of this paper is also to provide problems, attacks and countermeasures related to protection. Finally, it is hoped that this roadmap would inspire potential researchers to come up with smarter and better protection measures and make their network safer. The first such research analysis of secure routing protocols in WSNs is this roadmap study.


2021 ◽  
Author(s):  
Michael Ryan Sahai

Message security in multi-hop infrastructure-less networks such as Mobile Ad Hoc Net- works has proven to be a challenging task. A number of trust-based secure routing protocols has recently been introduced comprising of the traditional route discovery phase and a data transmission phase. In the latter, the action of relaying the data from one mobile node to another relies on the peculiarity of the wireless transmission medium as well as the capability of the source nodes to keep their energy level at an acceptable and reasonable level, posing another concern which is that of energy efficiency. This thesis proposes an Energy-Aware Trust Based Multi-path secured routing scheme (E-TBM) for MANETs, based on the dynamic source routing protocol (DSR). Results show that the E-TBM scheme outperforms the Trust Based Multi-path (TBM) secured routing scheme [1], chosen as a benchmark, in terms of energy consumption of the selected routing paths, number of dead nodes, trust compromise and route selection time, chosen as performance metrics.


2021 ◽  
Author(s):  
Michael Ryan Sahai

Message security in multi-hop infrastructure-less networks such as Mobile Ad Hoc Net- works has proven to be a challenging task. A number of trust-based secure routing protocols has recently been introduced comprising of the traditional route discovery phase and a data transmission phase. In the latter, the action of relaying the data from one mobile node to another relies on the peculiarity of the wireless transmission medium as well as the capability of the source nodes to keep their energy level at an acceptable and reasonable level, posing another concern which is that of energy efficiency. This thesis proposes an Energy-Aware Trust Based Multi-path secured routing scheme (E-TBM) for MANETs, based on the dynamic source routing protocol (DSR). Results show that the E-TBM scheme outperforms the Trust Based Multi-path (TBM) secured routing scheme [1], chosen as a benchmark, in terms of energy consumption of the selected routing paths, number of dead nodes, trust compromise and route selection time, chosen as performance metrics.


Author(s):  
Sherin Zafar ◽  
Samia Khan ◽  
Nida Iftekhar ◽  
Siddhartha Sankar Biswas

This chapter overviews and characterizes the protected steering convention in MANET, and furthermore, it discusses the proposed technique for alleviating those assaults. In the directing convention of the MANET while sending information bundles to different hubs, some middle hubs remove helpful data parcels and can't advance the parcel to the following hub. Some hubs may change the substance of bundles amid the information transmission session. In this way, secured transmission of information and different security administrations are the first necessity of MANET like some other foundation remote system. Ad-hoc arranges face different assaults like detached listening (passive eavesdropping) and dynamic obstruction, limiting source hub from finding the goal and system parcel. Ensuring the network layer usefulness is the most significant objective of system layer security plan for MANET, which prompts verified conveyance of bundles between the versatile hubs through multi-bounce sending.


Sign in / Sign up

Export Citation Format

Share Document