HYDROLOGICAL DROUGHT FORECASTS USING MARKOV CHAINS AND REGRESSION MODELS (A CASE STUDY FOR NORTHWEST OF ALGERIA)

2021 ◽  
pp. 90-103
Author(s):  
A. RAHMOUNI ◽  
◽  
M. MEDDI ◽  
A. HAMOUDI SAAED ◽  
◽  
...  

An effective drought forecast is an important measure to mitigate some of its most damaging impacts. In this study we compare the effectiveness of two models: Markov Switching Model (MSM) and Robust Regression Model (RRM) with three different approaches to forecast hydrological drought events in the north-west of Algeria using Standardized Runoff Index (SRI). The validation of these models is carried out by hydro-climatic series of 41 stations for the period of 1968-2009. The values of SRI 3, SRI 6, and SRI 12 have been forecasted over lead times of 1 and 6 months. The performance of forecast results is measured using R2 and RMSE. For the lead time of 1 month, the results are quite similar for both models with slight superiority for the Markov chain process. The addition of the SPI or RDI indices as independent variables improves this performance for some stations while it decreases accuracy for other stations. However, forecast accuracy declines significantly as the lead time increases to 6 months particularly for regression results.

2021 ◽  
Author(s):  
Bo Christiansen ◽  
Shuting Yang ◽  
Dominic Matte

<p>We study the decadal predictability in the North Atlantic region using  ensembles of historical and decadal prediction experiments with EC-Earth3  and other CMIP models. In particular, the focus is on the NAO and the sub-polar gyre region. In general the impact of initialization is weak  for lead-times larger than one to two years and we investigate different ways to isolate and estimate the statistical significance of this impact. For the sub-polar gyre region the prediction skill is found to be mainly due to an abrupt change in the late 90ies and models disagree on whether this skill is due to forcing or initial conditions. Also the predictability of the NAO is weak and varies with lead-time and length of the predicted period. We only see weak evidence of the 'signal-to-noise paradox'. The importance of the ensemble size is also studied.                                                              </p>


2005 ◽  
Vol 20 (6) ◽  
pp. 1021-1033 ◽  
Author(s):  
E. B. Carroll ◽  
T. D. Hewson

Abstract Over the past few years the way in which central forecast guidance is disseminated by forecasters in the Met Office headquarters has been changing, with an increasing reliance on modification of variables’ output from NWP models. The editing of grids of forecast data at the Met Office Operations Centre in Exeter is described, and two case studies are presented. Results of verification of modified versus raw fields are shown, presenting the concept of “lead time gain” as a unifying measure of relative forecast accuracy. At all lead times net lead time gain outweighs time spent considering and effecting modifications.


2016 ◽  
Author(s):  
G. Fu ◽  
A. W. Heemink ◽  
S. Lu ◽  
A. J. Segers ◽  
K. Weber ◽  
...  

Abstract. The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain, resulting in inaccurate volcanic ash forecasts in these distal areas. In our approach, we use real-life aircraft in-situ observations, measured in the North-West part of Germany during the 2010 Eyjafjallajokull eruption, in an ensemble-based data assimilation system combined with a volcanic ash transport model to investigate the potential improvement on the forecast accuracy with regard to the distal volcanic ash plume. We show that the error of the analyzed volcanic ash state can be significantly reduced through assimilating real-life in-situ measurements. After a continuous assimilation, it is shown that the aviation advice for Germany, the Netherlands and Belgium can be significantly improved. We suggest that with suitable aircrafts measuring once per day across the distal volcanic ash plume, the description and prediction of volcanic ash clouds in these areas can be greatly improved.


Author(s):  
Raphael M. Wambua

Hydrological drought in upper Tana River basin adversely affects water resources. In this study, a hydrological drought was forecasted using a Surface Water Supply Index (SWSI), a Streamflow Drought Index (SDI) and an Artificial Neural Networks (ANNs). The best SWSI involved combinations of rainfall and the index values integrated into ANNs. The best forecasts with SDI entailed composite functions of rainfall, stream flow and SDI. Different ANN models for both SWSI and SDI with lead times of 1 to 24 months were tested at hydrometric stations. Results show that the forecasting ability of all the networks decreased with the increase in lead-time. The best ANNs with specific architecture performed differently based on forecasting lead-time. SWSI drought forecasts were better than those of the SDI for all lead-times. The SWSI and SDI depicted R values of 0.752 and 0.732 for station 4AB05 for one-month lead-time. The findings are useful as an effective hydrological-drought early warning for viable mitigation and preparedness approaches to minimize the negative effects of drought.


2021 ◽  
Author(s):  
Ronnie Javier Araneda-Cabrera ◽  
María Bermudez ◽  
Jerónimo Puertas

<p>Hydrological droughts can trigger socioeconomic disruptions which can cause large impacts on societies. Therefore, their forecast is extremely important for early warning and disaster mitigation. Several modelling approaches have been developed for this purpose, and models based on machine learning have become popular during the last decades. In this study, we evaluated the performance of five commonly used models in drought forecasting: Autoregressive Integrated Moving Average (ARIMA), multiple linear (MLM), Random Forest (RF), K-nearest Neighbours (KN) and Artificial Networks (ANN) models.<br>The study site was the Paute River basin (4816.56 km2) located in the mid-high and eastern part of the Ecuadorian Andes. The "Daniel Palacios" dam, the oldest of 4 strategic dams and which alone generates 35% of Ecuador's national energy demand, was considered the lowest point in the basin. The basin is susceptible to hydrological droughts, which have led to power shortages in the past (e.g., in 1995, 1999 and 2009).<br>As hydrological drought predictand we used the monthly Standardized Streamflow Index (SSI) accumulated at 1-, 3-, 6- and 12-months, while the predictor variables were precipitation, temperature, river flow and the climatic indices associated with the El Niño-Southern Oscillation, ENSO (El Niño 1+2, El Niño 3, El Niño 4, and El Niño 3.4, which are strongly related to droughts in Ecuador). Data were obtained from the National Institute of Meteorology and Hydrology (INAMHI) and the Climate Prediction Centre of NOAA.<br>The models were evaluated for lead times of 1, 3, 6 and 12 months through the determination coefficient (R2), the Nash-Sutcliff efficiency (NSE) and the Root Mean Square Error (RMSE). The models' capability to distinguish between occurrence and non-occurrence of droughts (here defined as SSI≤-1) was assessed with a receiver operating characteristic (ROC) diagram. Models were validated using the expanding window (walk forward approach) as a back testing strategy starting as calibration and validation periods Aug/1984-Dec/2010 and Jan/2011-Dec/2019 (75 and 25% of the data, respectively).<br>As expected, SSI at longer aggregations can be predicted more accurately than at shorter ones with all models. This fact is explained because the former ones more effectively reduce the noise than the latter due to the increase in filter length. The greater the lead time, the less reliable the prediction. Considering a lead time of 1 month, the best model was the ANN for SSI-1 and SSI-3 (R2=0.64, ROC=0.67; and R2=0.78, ROC=1.00 respectively), and the MLM model for SSI-6 and SSI-12 (R2=0.86, ROC=0.66, and R2=0.96, ROC=0.99 respectively). However, very similar performances were obtained in the latter cases by the ANN model (R2=0.86, ROC=0.66 R2=0.91 and ROC=0.75 respectively) and the ARIMA model (R2=0.83, ROC=0.98 R2=0.93 and ROC=0.99 respectively). ARIMA models showed large errors for lead times longer than 1 month, so an ANN model is recommended. However, to maximize their potential, further research could explore modifications of the ANN architecture or the input data. Results indicate that these models can be used to forecast hydrological droughts in the Paute river basin and can be used to support reservoir operation decisions.</p>


Author(s):  
Daryl A. Cornish ◽  
George L. Smit

Oreochromis mossambicus is currently receiving much attention as a candidater species for aquaculture programs within Southern Africa. This has stimulated interest in its breeding cycle as well as the morphological characteristics of the gonads. Limited information is available on SEM and TEM observations of the male gonads. It is known that the testis of O. mossambicus is a paired, intra-abdominal structure of the lobular type, although further details of its characteristics are not known. Current investigations have shown that spermatids reach full maturity some two months after the female becomes gravid. Throughout the year, the testes contain spermatids at various stages of development although spermiogenesis appears to be maximal during November when spawning occurs. This paper describes the morphological and ultrastructural characteristics of the testes and spermatids.Specimens of this fish were collected at Syferkuil Dam, 8 km north- west of the University of the North over a twelve month period, sacrificed and the testes excised.


2014 ◽  
Author(s):  
Roald Amundsen ◽  
Godfred Hansen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document