Space Weather Monitoring Based on Surface Magnetic Observations (РС Index)

2021 ◽  
Vol 3 ◽  
pp. 12-27
Author(s):  
О. А. Troshichev ◽  
◽  
D. A. Sormakov ◽  

Polar cap magnetic activity (РС index) is an indicator of solar wind energy that enters the magnetosphere (Resolutions of XXII IAGA Assembly, 2013). Usually, the PC index follows changes in the interplanetary electric field EKL, that is estimated from measurement data on solar wind parameters at the Lagrange point L1 (available at the OMNI website). However, during the period of magnetic field perturbations, the correspondence between EKL and PC is often disturbed. To reveal the regularity of disturbances, the correlation was analyzed between the PC index and the computed field EKL during magnetic substorms, which are considered as an independent indicator of the impact of perturbed solar wind on the magnetosphere. The independent analysis for the PCN and PCS indices demonstrated that the magnetic activity in the winter polar cap (PCwinter) provides statistically more correct results than the magnetic activity in the summer cap (PCsummer). The correlation between the PCwinter and the computed field EKL (R > 0.5) was observed for ~80% of the analyzed substorms. In the other cases (20%), the correlation was low or even negative, even though substorms were evidently associated with the PC index growth. So, in these cases, the computed field EKL did not contact with the magnetosphere. Hence, the PC index allows verifying the real field EKL affecting the magnetosphere and checking in such way whether the solar wind registered at the Lagrange point contacted with the magnetosphere (data from the OMNI website).

2017 ◽  
Vol 14 (2) ◽  
pp. 17
Author(s):  
Anwar Santoso ◽  
Mamat Rahimat ◽  
Rasdewita Kesumaningrum ◽  
Siska Filawati

Space weather research is the principal activity at the Space Science Center, Lapan to learn characteristics and generator source of the space weather so that can mitigate its the impact on the Earth's environment as mandated in Law No. 21 Year 2013. One of them is the phenomenon of geomagnetic storms. Geomagnetic storms caused by the entry of solar wind together with the IMF Bz that leads to the south. The behavior of the solar wind parameters together with the IMF Bz before geomagnetic storms can determine the formation of geomagnetic storms that caused it. In spite that, by the solar wind parameters and IMF Bz behavior before geomagnetic storm can be estimated its intensity through the equation Dst * = 1.599 * Ptotal - 34.48. The result of this equation is obtained that the Dst minimum deviation between the raw data and the output of this equation to the geomagnetic storm events on March 17, 2013 is about of -2.51 nT or 1.9% and on the geomagnetic storm events on February 19, 2014 is about of 2.77 nT or 2, 5%. Thus, the equation Dst * = 1.599 * Ptotal - 34.48 is very good for the estimation of geomagnetic storms.


2021 ◽  
Vol 880 (1) ◽  
pp. 012009
Author(s):  
R Umar ◽  
S N A Syed Zafar ◽  
N H Sabri ◽  
M H Jusoh ◽  
A Yoshikawa ◽  
...  

Abstract The Sun’s magnetic activity influences disturbances that perturb interplanetary space by producing large fluxes of energetic protons, triggering geomagnetic storms and affecting the ground geomagnetic field. The effect of two solar events, namely Coronal Mass Ejection (CME) and Coronal Holes, on geomagnetic indices (SYM/H), solar wind parameters and ground geomagnetic fields has provided magnetic ground data, which were extracted from the Terengganu (TRE, -4.21° N, 175.91° E) Magnetometer (MAGDAS) station, and investigated in this study. Results show that the physical dynamic mechanism in the Earth’s magnetosphere is triggered by various solar wind parameters associated with CMEs and Coronal hole events during the minimum solar cycle of 24 at low latitudes. It is important to study solar wind-magnetosphere coupling because it has an impact on ground-based technological systems and human activities.


2020 ◽  
Author(s):  
Stepanov Nikita ◽  
Viktor Sergeev ◽  
Dmitry Sormakov ◽  
Stepan Dubyagin ◽  
Andrey Runov

<p>Proton and electron spectra in the plasma sheet usually consist of spectral core and high energy tail. These two populations are formed by different processes, driven by the various combinations of the solar wind parameters.These processes include different time delays and may act differently on protons or electrons. In this work we evaluate empirically the magnitude and the time delay of the impact of different solar wind parameter combinations on the protons and electrons with energies (30-300 keV) and reveal the mechanisms behind these impacts. To do this we build a model of the fluxes at different energy channels in the transition region (nightside central plasma sheet between 6 and 15 Re) for the THEMIS spacecraft observations in 2007-2018. We use normalized values of solar wind parameter combinations (incl. speed, density, pressure, electric field, etc) as inputs of the model, with regression coefficients indicating their impact magnitudes. We investigate different time delays up to 16 hours. The model obtained shows that protons and electrons are controlled differently by solar wind parameters: dynamic pressure is important for protons, whereas solar wind speed and VBs are important for electrons. Larger time delays are required to describe higher energy electron fluxes.</p>


2011 ◽  
Vol 29 (8) ◽  
pp. 1479-1489 ◽  
Author(s):  
O. A. Troshichev ◽  
N. A. Podorozhkina ◽  
A. S. Janzhura

Abstract. The PC (polar cap) index characterizing the solar wind energy input into the magnetosphere is calculated with use of parameters α, β, and φ, determining the relationship between the interplanetary electric field (EKL) and the value of magnetic activity δF in the polar caps. These parameters were noted as valid for large and small EKL values, and as a result the suggestion was made (Troshichev et al., 2006) that the parameters should remain invariant irrespective of solar activity. To verify this suggestion, the independent sets of calibration parameters α, β, and φ were derived separately for the solar maximum (1998–2001) and solar minimum (1997, 2007–2009) epochs, with a proper choice of a quiet daily variation (QDC) as a level of reference for the polar cap magnetic activity value. The results presented in this paper demonstrate that parameters α, β, and φ, derived under conditions of solar maximum and solar minimum, are indeed in general conformity and provide consistent (within 10 % uncertainty) estimations of the PC index. It means that relationship between the geoeffective solar wind variations and the polar cap magnetic activity responding to these variations remains invariant irrespective of solar activity. The conclusion is made that parameters α, β, and φ derived in AARI#3 version for complete cycle of solar activity (1995–2005) can be regarded as forever valid.


2016 ◽  
Vol 3 (1) ◽  
pp. 6 ◽  
Author(s):  
Binod Adhikari ◽  
Narayan P. Chapagain

<p>The polar cap potential (PCV) has long been considered as a key parameter for describing the state of the magnetosphere/ionosphere system. The relationship between the solar wind parameters and the PCV is important to understand the coupling process between solar wind-magnetosphere-ionosphere. In this work, we have estimated PCV and merging electric field (Em) during two different high intensity long duration continuous auroral activity (HILDCAA) events. For each event, we examine the solar wind parameters, magnitude of interplanetary magnetic field (IMF), interplanetary electric field (IEF), PCV, Em and geomagnetic indices (i.e., SYM-H, geomagnetic auroral electrojet (AE) index, polar cap index (PCI) and auroral electrojet index lower (AL), respectively). We also study the role of PCI and AL indices to monitor polar cap (PC) activity during HILDCAAs. In order to verify their role, we use wavelet transform and cross-correlation techniques. For the three events studied here, the results obtained from continuous wavelet transform (CWT) and discrete wavelet transform (DWT) are different, however the effect of HILDCAA can be easily identified. We also observe the cross-correlation of PCI and PCV with AL, SYM-H, Bz component of the IMF and Ey component of the IEF individually. Both PCI and PCV show very good correlation with AL and SYM-H indices during the events. Observing these results, it can be suggested that PCI and AL indices play a significant role to monitor geomagnetic activity generated by geoeffective solar wind parameters.</p><p>Journal of Nepal Physical Society Vol.3(1) 2015: 6-17</p>


Sign in / Sign up

Export Citation Format

Share Document