auroral electrojet
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 11)

H-INDEX

34
(FIVE YEARS 1)

2021 ◽  
Vol 21 (5) ◽  
pp. 1-10
Author(s):  
Drabindra Pandit ◽  
Narayan P. Chapagain ◽  
Binod Adhikari

Author(s):  
Joseph E. Borovsky

Most geomagnetic indices are associated with processes internal to the magnetosphere-ionosphere system: convection, magnetosphere-ionosphere current systems, particle pressure, ULF wave activity, etc. The saturation (or not) of various geomagnetic indices under various solar-wind driver functions (a.k.a. coupling functions) is explored by examining plots of the various indices as functions of the various driver functions. In comparing an index with a driver function, “saturation” of the index means that the trend of stronger geomagnetic activity with stronger driving weakens in going from mid-range driving to very strong driving. Issues explored are 1) whether the nature of the index matters (i.e., what the index measures and how the index measures it), 2) the relation of index saturation to cross-polar-cap potential saturation, and 3) the role of the choice of the solar-wind driver function. It is found that different geomagnetic indices exhibit different amounts of saturation. For example the SuperMAG auroral-electrojet indices SME, SML, and SMU saturate much less than do the auroral-electrojet indices AE, AL, and AU. Additionally it is found that different driver functions cause an index to show different degrees of saturation. Dividing a solar-wind driver function by the theoretical cross-polar-cap-potential correction (1+Q) often compensates for the saturation of an index, even though that index is associated with internal magnetospheric processes whereas Q is derived for solar-wind processes. There are composite geomagnetic indices E(1) that show no saturation when matched to their composite solar-wind driver functions S(1). When applied to other geomagnetic indices, the composite S(1) driver functions tend to compensate for index saturation at strong driving, but they also tend to introduce a nonlinearity at weak driving.


2021 ◽  
Author(s):  
Yunfang Zhong ◽  
Hui Wang ◽  
Zhichao Zheng ◽  
Yangfan He ◽  
Luyuan Sun ◽  
...  

<p>The auroral electrojet is an important element of the polar current system and an essential subject in space weather research. Based on the scalar magnetic field data from CHAMP satellite, we studied the influences of solar illumination and the dipole tilt angle (DTA) on the auroral electrojet as well as its seasonal variations. Furthermore, the auroral electrojet measured by satellite was compared with the auroral electrojet indices derived from the ground stations. It is shown that on the dayside, the auroral electrojet is more intense at a smaller solar zenith angle (SZA), whereas it’s more intense on the nightside when the SZA is larger. The daytime current is mainly controlled by the solar illumination, while the nighttime current is affected by the substorm. Compared with the solar illumination, the dipole tilt angle plays a minor role. The auroral electrojet shows an obvious annual and semiannual variation. The eastward electrojet and the dayside westward electrojet are more intense in summer than in winter, while the nightside westward electrojet is more intense in winter than in summer. The daytime westward electrojet is more intense at solstices, whereas the nighttime westward electrojet is more intense at equinoxes. The westward electrojet shows a good correlation with AL and SML indices. The eastward electrojet correlates well with the SMU index, but shows obvious difference with the AU index. The discrepancy can be attributed to the fact that the peak eastward electrojet is located outside the detection range of the auroral electrojet stations.</p>


2020 ◽  
Vol 38 (6) ◽  
pp. 1159-1170
Author(s):  
Masatoshi Yamauchi ◽  
Magnar G. Johnsen ◽  
Carl-Fredrik Enell ◽  
Anders Tjulin ◽  
Anna Willer ◽  
...  

Abstract. A solar-flare-induced, high-latitude (peak at 70–75∘ geographic latitude – GGlat) ionospheric current system was studied. Right after the X9.3 flare on 6 September 2017, magnetic stations at 68–77∘ GGlat near local noon detected northward geomagnetic deviations (ΔB) for more than 3 h, with peak amplitudes of >200 nT without any accompanying substorm activities. From its location, this solar flare effect, or crochet, is different from previously studied ones, namely, the subsolar crochet (seen at lower latitudes), auroral crochet (pre-requires auroral electrojet in sunlight), or cusp crochet (seen only in the cusp). The new crochet is much more intense and longer in duration than the subsolar crochet. The long duration matches with the period of high solar X-ray flux (more than M3-class flare level). Unlike the cusp crochet, the interplanetary magnetic field (IMF) BY is not the driver, with the BY values of only 0–1 nT out of a 3 nT total field. The equivalent ionospheric current flows eastward in a limited latitude range but extended at least 8 h in local time (LT), forming a zonal current region equatorward of the polar cap on the geomagnetic closed region. EISCAT radar measurements, which were conducted over the same region as the most intense ΔB, show enhancements of electron density (and hence of ion-neutral density ratio) at these altitudes (∼100 km) at which strong background ion convection (>100 m s−1) pre-existed in the direction of tidal-driven diurnal solar quiet (Sq0) flow. Therefore, this new zonal current can be related to this Sq0-like convection and the electron density enhancement, for example, by descending the E-region height. However, we have not found why the new crochet is found in a limited latitudinal range, and therefore, the mechanism is still unclear compared to the subsolar crochet that is maintained by a transient redistribution of the electron density. The signature is sometimes seen in the auroral electrojet (AE = AU − AL) index. A quick survey for X-class flares during solar cycle 23 and 24 shows clear increases in AU for about half the > X2 flares during non-substorm time, despite the unfavourable latitudinal coverage of the AE stations for detecting this new crochet. Although some of these AU increases could be the auroral crochet signature, the high-latitude crochet can be a rather common feature for X flares. We found a new type of the solar flare effect on the dayside ionospheric current at high latitudes but equatorward of the cusp during quiet periods. The effect is also seen in the AU index for nearly half of the > X2-class solar flares. A case study suggests that the new crochet is related to the Sq0 (tidal-driven part) current.


2020 ◽  
Author(s):  
Masatoshi Yamauchi ◽  
Magnar G. Johnsen ◽  
Carl-Fredrik Enell ◽  
Anders Tjulin ◽  
Anna Willer ◽  
...  

Abstract. Solar flare-induced High latitude (peak at 70–75° geographic latitude) ionospheric current system was studied. Right after the X9.3 flare on 6 September 2017, magnetic stations at 68–77° geographic latitudes (GGlat) near local noon detected northward geomagnetic deviations (ΔB) for more than 3 hours, with peak amplitudes > 200 nT, without any accompanying substorm activities. From its location, this solar flare effect, or crochet, is different from previously studied ones, namely, subsolar crochet (seen at lower latitude), auroral crochet (pre-requires auroral electrojet in sunlight), or cusp crochet (seen only in the cusp). The new crochet is much more intense and longer in duration than the subsolar crochet. The long duration matches with the period of high solar X-ray flux (more than M3-class flare level). Unlike the cusp crochet, interplanetary magnetic field (IMF) BY is not the driver with BY only 0–1 nT out of 3 nT total field. The equivalent ionospheric current flows eastward in a limited latitude range but extended at least 8 hours in local time (LT), forming a zonal current region equatorward of the polar cap on the geomagnetic closed region. EISCAT radar measurements over the same region as the most intense ΔB near local noon show enhancements of electron density (and hence ion-neutral ratio) at these altitudes (~ 100 km) where the background Sq ion convection (> 100 m/s) pre-existed. Therefore, this new zonal current can be related to the Sq convection and the electron density enhancement, e.g., by descending E-region height. However, we have not found why the new crochet is found in a limited latitudinal range, and therefore the mechanism is still unclear compared to the subsolar crochet that is maintained by transient re-distribution of electron density. The signature is sometimes seen in the Auroral Electrojet (AE) index. A quick eye-survey for X-class flares during solar cycle 23 and 24 shows clear AU increases for about half the > X2 flares during non-substorm time, although the latitudinal coverage of the AE stations is not favorable to detect this new crochet. Although some of them could be due to auroral crochet, this new crochet can be rather common feature for X flares.


2020 ◽  
Author(s):  
Jeng-Hwa Yee ◽  
Jesper Gjerloev ◽  
Viacheslav Merkin ◽  
Karl Laundal

<p>The Zeeman effect of the O<sub>2</sub> 118 GHz spectral radiance measurements can be utilized to remotely measure the magnetic field perturbations at altitudes close to the auroral electrojets. The technique has been demonstrated using the measurements provided by the Microwave Limb Souncer onboard the Aura spacecraft.  The derived current-induced magnetic field perturbations were found to be highly correlated with those coincidently obtained by ground magnetometers and to be consistent with the well-known auroral electrojet current distribution thereby providing a strong argument for the validity of the technique. With today's technology, a 118 GHz instrument, can be miniaturized allowing it to fly on small satellites such as CubeSats.  A constellation of small satellites with each one carrying a number of these identical mini-radiometers would have the ability to provide simultaneous multipoint measurement of the magnetic field perturbations at altitudes close to the electrojet, thereby greatly advancing our understanding of the ionospheric current system.  In this paper, we present the Zeeman magnetic field sensing technique, the requirements and specifications of the instrument, and an example of a cost effectively cubesat mission that provides unprecedented measurements of the evolution and structure of the auroral electrojet system.</p>


Author(s):  
Hong Lu ◽  
Jutao Yang ◽  
Qingliang Li ◽  
Shuji Hao ◽  
Feng Guo ◽  
...  

2019 ◽  
Vol 124 (8) ◽  
pp. 6636-6653
Author(s):  
S. Ohtani ◽  
J. W. Gjerloev ◽  
M. G. Johnsen ◽  
M. Yamauchi ◽  
U. Brändström ◽  
...  

2019 ◽  
Author(s):  
Marina A. Evdokimova ◽  
Anatoli A. Petrukovich

Abstract. We investigate one-dimensional models of westward substorm electrojet, using magnetic field observations along a meridian chain. We review two linear models of Kotikov et al. (1987) and Popov et al. (2001) with the large number of elementary currents at fixed positions. They can be applied to a magnetometer chain with many magnetic stations. A new nonlinear method with one current element is designed for the cases with small number of stations. We illustrate performance of these methods using data from IMAGE and Yamal Peninsula stations. Several corrective measures are proposed to account for unphysical solutions or local extrema of the optimized functions. We also advertize a generic maximum likelyhood approach to a problem, usable for any empiric model.


Sign in / Sign up

Export Citation Format

Share Document