Prediction of the Dst Geomagnetic Index Using Adaptive Methods

2021 ◽  
Vol 3 ◽  
pp. 38-46
Author(s):  
I. N. Myagkova ◽  
◽  
V. R. Shirokii ◽  
R. D. Vladimirov ◽  
O. G. Barinov ◽  
...  

The potential is investigated of predicting the time series of the Dst geomagnetic index using various adaptive methods: artificial neural networks (classical multilayer perceptrons), decision trees (random forest), gradient boosting. The prediction is based on the parameters of the solar wind and interplanetary magnetic field measured at the Lagrange point L1 in the ACE spacecraft experiment. It is shown that the best prediction skill of the three adaptive methods is demonstrated by gradient boosting.




2016 ◽  
Vol 9 (1) ◽  
pp. 53-62 ◽  
Author(s):  
R. D. García ◽  
O. E. García ◽  
E. Cuevas ◽  
V. E. Cachorro ◽  
A. Barreto ◽  
...  

Abstract. This paper presents the reconstruction of a 73-year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural networks (ANNs) from 1941 to 2001 and AOD measurements directly obtained with a Precision Filter Radiometer (PFR) between 2003 and 2013. The analysis is limited to summer months (July–August–September), when the largest aerosol load is observed at IZO (Saharan mineral dust particles). The ANN AOD time series has been comprehensively validated against coincident AOD measurements performed with a solar spectrometer Mark-I (1984–2009) and AERONET (AErosol RObotic NETwork) CIMEL photometers (2004–2009) at IZO, obtaining a rather good agreement on a daily basis: Pearson coefficient, R, of 0.97 between AERONET and ANN AOD, and 0.93 between Mark-I and ANN AOD estimates. In addition, we have analysed the long-term consistency between ANN AOD time series and long-term meteorological records identifying Saharan mineral dust events at IZO (synoptical observations and local wind records). Both analyses provide consistent results, with correlations  >  85 %. Therefore, we can conclude that the reconstructed AOD time series captures well the AOD variations and dust-laden Saharan air mass outbreaks on short-term and long-term timescales and, thus, it is suitable to be used in climate analysis.



Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 721
Author(s):  
Krzysztof Adamczyk ◽  
Wilhelm Grzesiak ◽  
Daniel Zaborski

The aim of the present study was to verify whether artificial neural networks (ANN) may be an effective tool for predicting the culling reasons in cows based on routinely collected first-lactation records. Data on Holstein-Friesian cows culled in Poland between 2017 and 2018 were used in the present study. A general discriminant analysis (GDA) was applied as a reference method for ANN. Considering all predictive performance measures, ANN were the most effective in predicting the culling of cows due to old age (99.76–99.88% of correctly classified cases). In addition, a very high correct classification rate (99.24–99.98%) was obtained for culling the animals due to reproductive problems. It is significant because infertility is one of the conditions that are the most difficult to eliminate in dairy herds. The correct classification rate for individual culling reasons obtained with GDA (0.00–97.63%) was, in general, lower than that for multilayer perceptrons (MLP). The obtained results indicated that, in order to effectively predict the previously mentioned culling reasons, the following first-lactation parameters should be used: calving age, calving difficulty, and the characteristics of the lactation curve based on Wood’s model parameters.



2021 ◽  
Author(s):  
Jakub Ważny ◽  
Michał Stefaniuk ◽  
Adam Cygal

AbstractArtificial neural networks method (ANNs) is a common estimation tool used for geophysical applications. Considering borehole data, when the need arises to supplement a missing well log interval or whole logging—ANNs provide a reliable solution. Supervised training of the network on a reliable set of borehole data values with further application of this network on unknown wells allows creation of synthetic values of missing geophysical parameters, e.g., resistivity. The main assumptions for boreholes are: representation of similar geological conditions and the use of similar techniques of well data collection. In the analyzed case, a set of Multilayer Perceptrons were trained on five separate chronostratigraphic intervals of borehole, considered as training data. The task was to predict missing deep laterolog (LLD) logging in a borehole representing the same sequence of layers within the Lublin Basin area. Correlation between well logs data exceeded 0.8. Subsequently, magnetotelluric parametric soundings were modeled and inverted on both boreholes. Analysis showed that congenial Occam 1D models had better fitting of TM mode of MT data in each case. Ipso facto, synthetic LLD log could be considered as a basis for geophysical and geological interpretation. ANNs provided solution for supplementing datasets based on this analytical approach.



2000 ◽  
Vol 176 ◽  
pp. 135-136
Author(s):  
Toshiki Aikawa

AbstractSome pulsating post-AGB stars have been observed with an Automatic Photometry Telescope (APT) and a considerable amount of precise photometric data has been accumulated for these stars. The datasets, however, are still sparse, and this is a problem for applying nonlinear time series: for instance, modeling of attractors by the artificial neural networks (NN) to the datasets. We propose the optimization of data interpolations with the genetic algorithm (GA) and the hybrid system combined with NN. We apply this system to the Mackey–Glass equation, and attempt an analysis of the photometric data of post-AGB variables.



2006 ◽  
Vol 38 (2) ◽  
pp. 227-237 ◽  
Author(s):  
Luis Oliva Teles ◽  
Vitor Vasconcelos ◽  
Luis Oliva Teles ◽  
Elisa Pereira ◽  
Martin Saker ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document