A comparison of a gradient boosting decision tree, random forests, and artificial neural networks to model urban land use changes: the case of the Seoul metropolitan area

Author(s):  
Myung-Jin Jun
2019 ◽  
Vol 14 (1) ◽  
pp. 1-30 ◽  
Author(s):  
Mohamad Farzinmoghadam ◽  
Nariman Mostafavi ◽  
Elisabeth Hamin Infield ◽  
Simi Hoque

Predicting resource consumption in the built environment and its associated environmental consequences is one of the core challenges facing policy-makers and planners seeking to increase the sustainability of urban areas. The study of land-use change has many implications for infrastructure design, resource allocation, and urban metabolism simulation. While most urban models focus on horizontal growth patterns, few investigate the impacts of vertical characteristics of urbanscapes in predicting land-use changes. In this paper, Building-form variables are introduced as a new determinant factor for investigating effects of vertical characteristics of an urbanscape in predicting land-use change. This work outlines an automated method for generating building-form variables from Light Detection and Ranging (LIDAR) data by using Density-Based Spatial Clustering and normal equations. This paper presents a Land-Use Model that uses Remote Sensing, GIS, and Artificial Neural Networks (ANNs) to predict urban growth patterns within the IUMAT framework (Integrated Urban Metabolism Analysis Tool), which is an analytical platform for quantifying the overall sustainability in the urbanscape. The town of Amherst in Western Massachusetts (for the period of 1971–2005) is used as a case study for testing the model. By isolating the weights of each explanatory variable in models, this study highlights the influence of building geometry on future development scenarios.


2019 ◽  
Vol 11 (14) ◽  
pp. 1713 ◽  
Author(s):  
Shahab Eddin Jozdani ◽  
Brian Alan Johnson ◽  
Dongmei Chen

With the advent of high-spatial resolution (HSR) satellite imagery, urban land use/land cover (LULC) mapping has become one of the most popular applications in remote sensing. Due to the importance of context information (e.g., size/shape/texture) for classifying urban LULC features, Geographic Object-Based Image Analysis (GEOBIA) techniques are commonly employed for mapping urban areas. Regardless of adopting a pixel- or object-based framework, the selection of a suitable classifier is of critical importance for urban mapping. The popularity of deep learning (DL) (or deep neural networks (DNNs)) for image classification has recently skyrocketed, but it is still arguable if, or to what extent, DL methods can outperform other state-of-the art ensemble and/or Support Vector Machines (SVM) algorithms in the context of urban LULC classification using GEOBIA. In this study, we carried out an experimental comparison among different architectures of DNNs (i.e., regular deep multilayer perceptron (MLP), regular autoencoder (RAE), sparse, autoencoder (SAE), variational autoencoder (AE), convolutional neural networks (CNN)), common ensemble algorithms (Random Forests (RF), Bagging Trees (BT), Gradient Boosting Trees (GB), and Extreme Gradient Boosting (XGB)), and SVM to investigate their potential for urban mapping using a GEOBIA approach. We tested the classifiers on two RS images (with spatial resolutions of 30 cm and 50 cm). Based on our experiments, we drew three main conclusions: First, we found that the MLP model was the most accurate classifier. Second, unsupervised pretraining with the use of autoencoders led to no improvement in the classification result. In addition, the small difference in the classification accuracies of MLP from those of other models like SVM, GB, and XGB classifiers demonstrated that other state-of-the-art machine learning classifiers are still versatile enough to handle mapping of complex landscapes. Finally, the experiments showed that the integration of CNN and GEOBIA could not lead to more accurate results than the other classifiers applied.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Andrea Montero ◽  
Joan Marull ◽  
Enric Tello ◽  
Claudio Cattaneo ◽  
Francesc Coll ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2332
Author(s):  
Cecilia Martinez-Castillo ◽  
Gonzalo Astray ◽  
Juan Carlos Mejuto

Different prediction models (multiple linear regression, vector support machines, artificial neural networks and random forests) are applied to model the monthly global irradiation (MGI) from different input variables (latitude, longitude and altitude of meteorological station, month, average temperatures, among others) of different areas of Galicia (Spain). The models were trained, validated and queried using data from three stations, and each best model was checked in two independent stations. The results obtained confirmed that the best methodology is the ANN model which presents the lowest RMSE value in the validation and querying phases 1226 kJ/(m2∙day) and 1136 kJ/(m2∙day), respectively, and predict conveniently for independent stations, 2013 kJ/(m2∙day) and 2094 kJ/(m2∙day), respectively. Given the good results obtained, it is convenient to continue with the design of artificial neural networks applied to the analysis of monthly global irradiation.


Sign in / Sign up

Export Citation Format

Share Document