scholarly journals Monitoring Out-of-State Patients during a 2017 Hurricane Response using ESSENCE

2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Caleb Wiedeman ◽  
Julie Shaffner ◽  
Kelly Squires ◽  
Jeffrey Leegon ◽  
Rendi Murphree ◽  
...  

ObjectiveTo demonstrate the use of ESSENCE in the BioSense Platform to monitor out-of-State patients seeking emergency healthcare in Tennessee during Hurricanes Harvey and Irma.IntroductionSyndromic surveillance is the monitoring of symptom combinations (i.e., syndromes) or other indicators within a population to inform public health actions. The Tennessee Department of Health (TDH) collects emergency department (ED) data from more than 70 hospitals across Tennessee to support statewide syndromic surveillance activities. Hospitals in Tennessee typically provide data within 48 hours of a patient encounter. While syndromic surveillance often supplements disease- or condition-specific surveillance, it can also provide general situational awareness about emergency department patients during an event or response.During Hurricanes Harvey (continental US landfall on August 25, 2017) and Irma (continental US landfall on September 10, 2017), TDH supported all hazards situational awareness using the Electronic Surveillance System for the Early Notification of Community-based Epidemics (ESSENCE) in the BioSense Platform supported by the National Syndromic Surveillance Program (NSSP). The volume of out-of-state patients in Tennessee was monitored to assess the impact on the healthcare system and any geographic- or hospital-specific clustering of out-of-state patients within Tennessee. Results were included in daily State Health Operations Center (SHOC) situation reports and shared with agency response partners such as the Tennessee Emergency Management Agency (TEMA).MethodsData were monitored from August 18, 2017 through September 24, 2017. A simple query was established in ESSENCE using the Patient Location (Full Details) dataset. Data were limited to hospital ED visits reported by Tennessee (Site = “Tennessee”). To monitor ED visits among residents of Texas before, during, and after Major Hurricane Harvey, data were queried for a patient zip code within Texas (State = “Texas”). ED visits among Florida residents were monitored similarly (State = “Florida”) before, during, and after Major Hurricane Irma. Additionally, a free text chief complaint search was implemented for the terms “Harvey”, “Irma, “hurricane”, “evacuee”, “evacuate”, “Florida”, and “Texas”. Chief complaint search results were then filtered to remove encounters with patient zip codes within Tennessee.ResultsFrom August 18, 2017 through September 24, 2017, Tennessee hospital EDs reported 277 patient encounters among Texas residents and 1,041 patient encounters among Florida residents. The number of encounters among patients from Texas remained stable throughout the monitoring period. In contrast, the number of encounters among patients from Florida exceeded the expected value on September 7, peaked September 10 at 116 patient encounters, and returned to expected levels on September 16 (Figure 1). The increase in patients from Florida was evenly distributed across most of Tennessee, with some clustering around a popular tourism area in East Tennessee. No concerning trends in reported syndromes or chief complaints were identified among Texas or Florida patients.The free text chief complaint query first exceeded the expected value on September 9, peaked on September 11 with 5 patient encounters, and returned to expected levels on September 14. From August 18 through September 24, 21 of 30 visits captured by the query were among Florida residents. One Tennessee hospital appeared to be intentionally using the term “Irma” in their chief complaint field to indicate patients from Florida impacted by the hurricane.ConclusionsThe ESSENCE instance in the BioSense platform provided TDH the opportunity to easily locate and monitor out-of-state patients seen in Tennessee hospital EDs. While TDH was unable to validate whether all patients identified as residents of Florida were displaced because of Major Hurricane Irma, the timing of the rise and fall of patient encounters was highly suggestive. Likewise, seeing no substantial increase ED patients with residence in Texas reassured TDH that the effects of Hurricane Harvey were not impacting hospital emergency departments in Tennessee.TDH used information and charts from ESSENCE to support situational awareness in our SHOC and at TEMA. Use of patient zip code to identify out-of-state residents was more sensitive than chief complaint searches by keyword during this event. ESSENCE allowed TDH to see where out-of-state patients appeared to be concentrating in Tennessee and monitor the need for targeting messaging and resources to heavily affected areas. Additionally, close surveillance of chief complaints among out-of-state patients provided assurance that no unusual patterns in illness or injury were occurring.ESSENCE is the only TDH information source capable of rapidly collecting health information on out-of-state patients. ESSENCE allowed TDH to quickly identify a change within the patient population seen at Tennessee emergency departments and monitor the situation until the patient population returned to baseline levels.

JAMIA Open ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 160-166
Author(s):  
David Chang ◽  
Woo Suk Hong ◽  
Richard Andrew Taylor

Abstract Objective We learn contextual embeddings for emergency department (ED) chief complaints using Bidirectional Encoder Representations from Transformers (BERT), a state-of-the-art language model, to derive a compact and computationally useful representation for free-text chief complaints. Materials and methods Retrospective data on 2.1 million adult and pediatric ED visits was obtained from a large healthcare system covering the period of March 2013 to July 2019. A total of 355 497 (16.4%) visits from 65 737 (8.9%) patients were removed for absence of either a structured or unstructured chief complaint. To ensure adequate training set size, chief complaint labels that comprised less than 0.01%, or 1 in 10 000, of all visits were excluded. The cutoff threshold was incremented on a log scale to create seven datasets of decreasing sparsity. The classification task was to predict the provider-assigned label from the free-text chief complaint using BERT, with Long Short-Term Memory (LSTM) and Embeddings from Language Models (ELMo) as baselines. Performance was measured as the Top-k accuracy from k = 1:5 on a hold-out test set comprising 5% of the samples. The embedding for each free-text chief complaint was extracted as the final 768-dimensional layer of the BERT model and visualized using t-distributed stochastic neighbor embedding (t-SNE). Results The models achieved increasing performance with datasets of decreasing sparsity, with BERT outperforming both LSTM and ELMo. The BERT model yielded Top-1 accuracies of 0.65 and 0.69, Top-3 accuracies of 0.87 and 0.90, and Top-5 accuracies of 0.92 and 0.94 on datasets comprised of 434 and 188 labels, respectively. Visualization using t-SNE mapped the learned embeddings in a clinically meaningful way, with related concepts embedded close to each other and broader types of chief complaints clustered together. Discussion Despite the inherent noise in the chief complaint label space, the model was able to learn a rich representation of chief complaints and generate reasonable predictions of their labels. The learned embeddings accurately predict provider-assigned chief complaint labels and map semantically similar chief complaints to nearby points in vector space. Conclusion Such a model may be used to automatically map free-text chief complaints to structured fields and to assist the development of a standardized, data-driven ontology of chief complaints for healthcare institutions.


Author(s):  
Kristen Soto ◽  
Erin Grogan ◽  
Alexander Senetcky ◽  
Susan Logan

ObjectiveTo describe the use of syndromic surveillance data for real-time situational awareness of emergency department utilization during a localized mass overdose event related to the substance K2.IntroductionOn August 15, 2018, the Connecticut Department of Public Health (DPH) became aware of a cluster of suspected overdoses in an urban park related to the synthetic cannabinoid K2. Abuse of K2 has been associated with serious adverse effects and overdose clusters have been reported in multiple states. This investigation aimed to characterize the use of syndromic surveillance data to monitor a cluster of suspected overdoses in real time.MethodsThe EpiCenter syndromic surveillance system collects data on all emergency department (ED) visits at Connecticut hospitals. ED visits associated with the event were identified using ad hoc keyword analyses. The number of visits by facility location for the state, county, and city were communicated to state and local partners in real time. Gender, age, and repeated ED visits were assessed. After the event, surveillance findings were summarized for partnersResultsDuring the period of August 15–16, 2018 the number of ED visits with a mention of K2 in the chief complaint increased from three to 30 in the impacted county, compared to a peak of 5 visits during the period of March–July, 2018. An additional 25 ED visits were identified using other related keywords (e.g., weed). After the event, 72 ED visits were identified with K2 and location keywords in the chief complaint or triage notes. These 72 visits comprised 53 unique patients, with 12 patients returning to the ED 2–5 times over the two day period. Of 53 patients, 77% were male and the median age was 40 years (interquartile range 35–51 years). Surveillance findings were shared with partners in real time for situational awareness, and in a summary report on August 21.ConclusionsData from the EpiCenter system were consistent with reports from other data sources regarding this cluster of suspected drug overdoses. Next steps related to this event involve: monitoring data for reference to areas of concentrated substance use, enabling automated alerts to detect clusters of interest, and developing a plan to improve coordinate real-time communication with stakeholderswithin DPH and with external partners during events.


Author(s):  
Zachary M. Stein

ObjectiveTo evaluate syndrome definitions capturing storm- and extremeweather-related emergency department visits in Kansas hospitalsparticipating in the National Syndromic Surveillance Program(NSSP).IntroductionKansas storms can occur without warning and have potential tocause a multitude of health issues. Extreme weather preparednessand event monitoring for public health effects is being developedas a function of syndromic surveillance at the Kansas Departmentof Health and Environment (KDHE). The Syndromic SurveillanceProgram at KDHE utilized emergency department (ED) data to detectdirect health effects of the weather events in the first 9 months of2016. Current results show injuries directly related to the storms andalso some unexpected health effects that warrant further exploration.MethodsA basic syndrome definition was defined based on extreme springand summer weather events experienced in Kansas. This broaddefinition pulled records from Kansas EDs that included the followingin the Chief Complaint or Triage Notes fields:●Storm●Rain●Torna(dos)●Wind●FloodThis broad syndrome definition was performed on data submittedto the Kansas’s production server through NSSP between January 1stand August 30th, 2016. After the initial pull, duplicate records for thesame patient and visit were removed.The remaining set was then searched by hand to identify termscaught by the syndrome definition that were not related to stormactivity or extreme weather. Record chief complaints were thenscanned by hand to identify common words containing the searchcriteria and then removed. Keywords not of interest to the syndromedefinition that were caught were: migraine, window, drain, restrain,train, and many other proper nouns that contained one of the keywords.These remaining visits were then sorted by nature of visit andunexpected records were recorded for future direction of syndromedefinition development.ResultsThe initial data pull under these conditions yielded 17,691 uniqueemergency department visits from January 1stto August 30thduringthe 2016 year. From this, records were classified based on key wordsresulting in the pull. The table below shows the initial pull results, theremaining records after errant results were expunged, the percentageof visits that were removed, and the most common reason for removal.Of these records remaining after cleaning, 20 were related tostorms, 62 were related to rain, 7 were related to tornado activity,66 were related to wind, and 14 were related to flooding along withthe mixed variable instances shown in the table. A majority of thewind-related ED visits were injuries and the majority of the tornadoactivity events were related to injuries sustained while taking shelter.Many of the injuries mentioning storms were sustained in preparationfor the storm, and a handful were due to mental stresses regardingstorm activity.ConclusionsSyndrome definition development is an iterative process thatwill vary by region. By manually looking at line-level data details,future searches can better accommodate these errant results and falsepositives. These studies will facilitate more rapid extreme weatherresponse in Kansas and allow better situational awareness. Alongwith general storm-related injuries, knowledge of the unusual recordscaught by a syndrome definition can also help direct public educationin preparation of future storms. With injuries sustained while takingshelter and injuries sustained in preparation for the storm, we can takethese unique ED visits and work on interventions to prevent futureoccurrences.


2017 ◽  
Vol 132 (1_suppl) ◽  
pp. 73S-79S ◽  
Author(s):  
Elizabeth R. Daly ◽  
Kenneth Dufault ◽  
David J. Swenson ◽  
Paul Lakevicius ◽  
Erin Metcalf ◽  
...  

Objectives: Opioid-related overdoses and deaths in New Hampshire have increased substantially in recent years, similar to increases observed across the United States. We queried emergency department (ED) data in New Hampshire to monitor opioid-related ED encounters as part of the public health response to this health problem. Methods: We obtained data on opioid-related ED encounters for the period January 1, 2011, through December 31, 2015, from New Hampshire’s syndromic surveillance ED data system by querying for (1) chief complaint text related to the words “fentanyl,” “heroin,” “opiate,” and “opioid” and (2) opioid-related International Classification of Diseases ( ICD) codes. We then analyzed the data to calculate frequencies of opioid-related ED encounters by age, sex, residence, chief complaint text values, and ICD codes. Results: Opioid-related ED encounters increased by 70% during the study period, from 3300 in 2011 to 5603 in 2015; the largest increases occurred in adults aged 18-29 and in males. Of 20 994 total opioid-related ED visits, we identified 18 554 (88%) using ICD code alone, 690 (3%) using chief complaint text alone, and 1750 (8%) using both chief complaint text and ICD code. For those encounters identified by ICD code only, the corresponding chief complaint text included varied and nonspecific words, with the most common being “pain” (n = 3335, 18%), “overdose” (n = 1555, 8%), “suicidal” (n = 816, 4%), “drug” (n = 803, 4%), and “detox” (n = 750, 4%). Heroin-specific encounters increased by 827%, from 4% of opioid-related encounters in 2011 to 24% of encounters in 2015. Conclusions: Opioid-related ED encounters in New Hampshire increased substantially from 2011 to 2015. Data from New Hampshire’s ED syndromic surveillance system provided timely situational awareness to public health partners to support the overall response to the opioid epidemic.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Kristin Arkin

ObjectiveWe sought to use free text mining tools to improve emergency department (ED) chief complaint and discharge diagnosis data syndrome definition matching across facilities with differing robustness of data in the Electronic Surveillance System for the Early Notification of Community-based Epidemics (ESSENCE) application in Idaho’s syndromic surveillance system.IntroductionStandard syndrome definitions for ED visits in ESSENCE rely on chief complaints. Visits with more words in the chief complaint field are more likely to match syndrome definitions. While using ESSENCE, we observed geographic differences in chief complaint length, apparently related to differences in electronic health record (EHR) systems, which resulted in disparate syndrome matching across Idaho regions. We hypothesized that chief complaint and diagnosis code co-occurrence among ED visits to facilities with long chief complaints could help identify terms that would improve syndrome match among facilities with short chief complaints.MethodsThe ESSENCE-defined influenza-like illness (ILI) chief complaint syndrome was used as the base syndrome for this analysis. Syndrome-matched visits were defined as visits that match the syndrome definition.We assessed chief complaints and diagnosis code co-occurrence of syndrome-matched visits using the RCRAN TidyText package and developed a bigram network from normalized, concatenated chief complaint and diagnosis code (CCDD) fields and normalized diagnosis code (DD) fields per previously described methodologies.1 Common connections were defined by a natural break in frequency of pair occurrence for CCDD pairs (30 occurrences) and DD pairs (5 occurrences).The ESSENCE syndrome was revised by adding relevant bigram network clusters and logic operators. We compared time series of the percent of ED visits matched to the ESSENCE syndrome with those matched to the revised syndrome. We stratified the time series by facilities grouped by short (average < 4 words, “Group A”) and long (average ≥ 4 words, “Group B”) chief complaint fields (Figure 1). Influenza season start was defined as two consecutive weeks above baseline, or the 95% upper confidence limit of percent syndrome-matched visits outside of the CDC ILI surveillance season. Season trends and influenza-related deaths in Idaho residents were compared.ResultsDuring August 1, 2016 through July 31, 2017, 1,587 (1.17%) of 135,789 ED visits matched the ESSENCE syndrome. Bigram networks of CCDD fields produced clusters already included by the ESSENCE syndrome. The bigram network of DD fields (Figure 2) produced six clusters. The revised syndrome definition included the ESSENCE syndrome, 3 single DD terms, and 3 two DD terms combined. The start of influenza season was identified as the same week for both ILI syndrome definitions (ESSENCE baseline 0.70%; revised baseline 2.21%). The ESSENCE syndrome indicated the season peaked during Morbidity and Mortality Weekly Report (MMWR) week 2017-05 with the season ending MMWR week 2017-14. The revised syndrome indicated 2017-20 as the season end. Multiple peaks seen with the revised syndrome during MMWR weeks 2017-02, 2017-05, and 2017-10 mirrored peaks in influenza-related deaths during MMWR weeks 2017-03, 2017-06, and 2017-11.ILI season onset was five weeks earlier with the revised syndrome compared with the ESSENCE syndrome in Group A facilities, but remained the same in Group B. The annual percentage of ED visits related to ILI was more uniform between facility groups under the revised syndrome than the ESSENCE syndrome. Unlike the trend seen with the ESSENCE syndrome, the revised syndrome shows low-level ILI activity in both groups year-round.ConclusionsIn Idaho, dramatic differences in ED visit chief complaint word counts were seen between facilities; bigram networks were found to be an important tool to identify diagnosis codes and logical operators that built more inclusive syndrome definitions when added to an existing chief complaint syndrome. Bigram networks may aid understanding the relationship between chief complaints and diagnosis codes in syndrome-matched visits.Use of trade names and commercial sources is for identification only and does not imply endorsement by the Centers for Disease Control and Prevention, the Public Health Service, or the U.S. Department of Health and Human Services.References1. Silge, J., Robinson, D. (2017). “Text Mining with R”. O’Reilly.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Kristin Arkin

ObjectiveIn August 2017, a large influx of visitors was expected to view the total solar eclipse in Idaho. The Idaho Syndromic Surveillance program planned to enhance situation awareness during the event. In preparation, we sought to examine syndrome performance of several newly developed chief complaint and combination chief complaint and diagnosis code syndrome definitions to aid in interpretation of syndromic surveillance data during the event.IntroductionThe August 21, 2017 total solar eclipse in Idaho was anticipated to lead to a large influx of visitors in many communities, prompting a widespread effort to assure Idaho was prepared. To support these efforts, the Idaho Syndromic Surveillance program (ISSp) developed a plan to enhance situation awareness during the event by conducting syndromic surveillance using emergency department (ED) visit data contributed to the National Syndromic Surveillance Program’s BioSense platform by Idaho hospitals. ISSp sought input on anticipated threats from state and local emergency management and public health partners, and selected 8 syndromes for surveillance.Ideally, the first electronic message containing information on an emergency department visit is sent to ISSp within 24 hours of the visit and includes the chief complaint for the visit. Data on other variables, such as diagnosis codes, are updated by subsequent messages for several days after the visit. Chief complaint (CC) text and discharge diagnosis (DD) codes are the primary variables used for syndrome match; delay in reporting these variables adversely affects timely syndrome match of visits. Because our plan included development of new syndrome definitions and querying data within 24 hours of visits, earlier than ISSp had done previously for trend analysis, we sought to better understand syndrome performance.MethodsWe defined messages with completed CC and DD as the last message regarding a visit where term count increased from previous messages regarding that visit, indicating new information was added to the field. We retrospectively assessed the total number of ED visits and calculated the daily frequency of completed CC and DD by days since visit date for visits during June 1–July 31, 2017. Additionally, we calculated facility mean word count in CC fields by averaging the word count of parsed, complete CC fields for visits occurring June 1–July 31, 2017 for each facility.During July 10–24, 2017, we calculated the daily frequency of visits occurring in the previous 90 days for total ED visits and syndrome-matched visits for 8 selected syndromes (heat-related illness; cold exposure; influenza-like-illness; nausea, vomiting, and diarrhea; animal/bug bites and stings; drowning/submersion; alcohol/drug intoxication; and medication replacement). Syndrome-matched visits were defined as visits with CC or DD that match the syndrome definition. We calculated the percent of syndrome-matched visits by syndromes defined with CC or CC and DD combined (CCDD) over time. Syndromes with fewer than 5 matched visits were excluded from analysis.ResultsComplete CCs were received for 99.1% of visits and complete DDs were received for 89.8% of visits. Complete CCs were submitted for 58.2% of visits within 1 day of the visit, 88.9% of visits within 3 days, and 98.9% of visits within 7 days. In contrast, complete DDs were submitted for 24.3% of visits within 1 day, 38.7% of visits within 3 days, and 53.7% of visits within 7 days (Table 1).During the observation period, data submission from facilities representing approximately 33% of visits was interrupted for 5 (36%) of 14 days. Heat-related illness, cold exposure, and drowning/submersion, were excluded from syndrome-match analysis. During the 9 days of uninterrupted data submission, 100% syndrome-matched visits for syndromes defined by CC alone and 69.1% syndrome-matched visits for syndromes defined by CCDD were identified within 6–7 days of initial visit. Facilities with interrupted data submission contributed 75% of CC syndrome-matched visits and 33% of CCDD syndrome-matched visits. The facility mean word count in CC fields from these facilities was >15 compared with 2–4 from other facilities.ConclusionsExamination of syndrome performance prior to a known event quantitated differences in timeliness of CC and DD completeness and syndrome match. CCs and DDs in visit messages were not complete within 24 hours of initial visit. CC completion was nearly 34 percentage points greater than DD completeness 1 day after initial visit and did not converge until ≥15 days after initial visit. Higher percentages of syndrome match within 6–7 days of initial visit were seen by CC alone than CCDD defined syndromes. Facilities using longer CCs contributed disproportionately to syndrome matching using CC, but not CCDD syndrome definitions. Syndromic surveillance system characteristics, including timeliness of CCs and DDs, length of CCs, and characteristics of facilities from which data transmission is interrupted should be considered when building syndrome definitions that will be used for surveillance within 7 days of emergency department visits and when interpreting syndromic surveillance findings.


2019 ◽  
Vol 14 (1) ◽  
pp. 44-48
Author(s):  
Priscilla W. Wong ◽  
Hilary B. Parton

ABSTRACTObjective:Syndromic surveillance has been useful for routine surveillance on a variety of health outcomes and for informing situational awareness during public health emergencies. Following the landfall of Hurricane Maria in 2017, the New York City (NYC) Department of Health and Mental Hygiene (DOHMH) implemented an enhanced syndromic surveillance system to characterize related emergency department (ED) visits.Methods:ED visits with any mention of specific key words (“Puerto,” “Rico,” “hurricane,” “Maria”) in the ED chief complaint or Puerto Rico patient home Zip Code were identified from the DOHMH syndromic surveillance system in the 8-week window leading up to and following landfall. Visit volume comparisons pre- and post-Hurricane Maria were performed using Fisher’s exact test.Results:Analyses identified an overall increase in NYC ED utilization relating to Puerto Rico following Hurricane Maria landfall. In particular, there was a small but significant increase in visits involving a medication refill or essential medical equipment. Visits for other outcomes, such as mental illness, also increased, but the differences were not statistically significant.Conclusions:Gaining this situational awareness of medical service use was informative following Hurricane Maria, and, following any natural disaster, the same surveillance methods could be easily established to aid an effective emergency response.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Victoria F. Dirmyer

Objective. This report describes the development of a novel syndromic cold weather syndrome for use in monitoring the impact of cold weather events on emergency department attendance. Methods. Syndromic messages from seven hospitals were analyzed for ED visits that occurred over a 12-day period. A cold weather syndrome was defined using terms in the self-reported chief complaint field as well as specific ICD-10-CM codes related to cold weather. A κ statistic was calculated to assess the overall agreement between the chief complaint field and diagnosis fields to further refine the cold weather syndrome definition. Results. Of the 3,873 ED visits that were reported, 487 were related to the cold weather event. Sixty-three percent were identified by a combination of diagnosis codes and chief complaints. Overall agreement between chief complaint and diagnosis codes was moderate (κ=0.50; 95% confidence interval = 0.48–0.52). Conclusion. Due to the near real-time reporting of syndromic surveillance data, analysis results can be acted upon. Results from this analysis will be used in the state’s emergency operations plan (EOP) for cold weather and winter storms. The EOP will provide guidance for mobilization of supplies/personnel, preparation of roadways and pedestrian walkways, and the coordination efforts of multiple state agencies.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Zachary M Stein

ObjectiveTo develop a syndrome definition and analyze syndromic surveillance data usefulness in surveillance of firework-related emergency department visits in Kansas. Introduction Across the U.S.A., multiple people seek treatment for fireworks-related injuries around the July 4th holiday. Syndromic surveillance in Kansas allows for near real-time analysis of the injuries occurring during the firework selling season. During the 2017 July 4thholiday, the Kansas Syndromic Surveillance Program (KSSP) production data feed received data from 88 EDs at excellent quality and timeliness. Previous and current firework safety messaging in Kansas is dependent on voluntary reporting from hospitals across the state. With widespread coverage of EDs by KSSP, data can be more complete and timely to better drive analysis and public information Methods:KSSP data was queried through the Electronic Surveillance System for the Early Notification of Community-based Epidemics (ESSENCE) v.1.20 provided by the National Syndromic Surveillance Program. Data between June 12, 2017 and August 13, 2017 were queried. The first query (Query A, Table 1.) searched the Discharge Diagnosis History field for the “W39” ICD-10 Diagnosis code, “Discharge of firework.” These records were searched for common firework terms contained in the Chief Complaint History field. These firework-related free text terms (Query B, Table 1.) were then combined with other potential firework-related terms to create a preliminary free text query (Query C, Table 1.). This preliminary query was run on the Chief Complaint History field. Data were then searched for false positive cases and appropriate negation terms were included to accommodate this. The new query with negation terms (Query D, Table 1.) was run on the Chief Complaint History field, combined with the results from the Discharge Diagnosis History field, and then combined records were de-duplicated based on a unique visit identifier. The final data set was then classified by the anatomical location of the injury and the gender and age group of the patient. Results:The initial query (Query A, Table 1.) for the diagnosis code “W39” returned 101 unique ED visits. Of these 101 unique ED visits, the following terms were identified in the Chief Complaint History field: shell, artillery, bomb, sparkler, grenade, fire cracker, firework, and firework show. These key terms were translated into Query B, Table 1. Other key terms deemed likely to capture specific firework-related exposures were then included into Query C, Table 1. , including roman, candle, lighter, M80, and punk. Query C was then used to query the Chief Complaint History field, returning 144 unique ED visits. Cases captured by Query C were then reviewed by hand for false positives and the negation terms, lighter fluid, fish, nut, and pistachio, were incorporated the Query D, Table 1. The previous process for Query C was then repeated on Query D, leaving a remaining 136 unique cases. Query A’s 101 unique ED visits was then combined with the 136 unique ED visits captured by Query D and de-duplicated. The de-duplicated data set contained 170 unique ED visits which were then reviewed by hand for false positives. The final removal of false positives from the combined and de-duplicated data set left a remaining 154 unique ED visits for firework-related injuries during this time period.For these data, the most common victims of firework injuries were males, accounting for 65.5% of all firework related ED visits and children ages 0 to 19 accounting for 44.2% of these visits. At every age breakout, male injuries exceeded female injuries. The most common anatomical location of the injury was one or both hands with 38.3% of all injuries mentioned hands as their primary injury. Injuries to the eyes, face, and head accounted for the second most injuries (28.6% of all patients). Conclusions: The selling of fireworks will be a yearly occurrence of a specific exposure that can potentially lead to injuries. Utilizing syndromic surveillance to review the holiday firework injuries is a very rapid method to assess the impact of these injuries and may allow for future direction of public information during the holiday. Having a syndrome definition that builds on knowledge from previous years will allow for quicker case identification as well.State public information regarding firework safety can be significantly bolstered by accurate and rapid data assessment. Developing a firework injury syndrome definition that is accurate and returns information rapidly has allowed for increased buy-in to the Kansas Syndromic Surveillance Program from public information offices, fire marshal’s offices, and other program fields.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Stefanie P. Albert ◽  
Rosa Ergas ◽  
Sita Smith ◽  
Gillian Haney ◽  
Monina Klevens

ObjectiveWe sought to measure the burden of emergency department (ED) visits associated with injection drug use (IDU), HIV infection, and homelessness; and the intersection of homelessness with IDU and HIV infection in Massachusetts via syndromic surveillance data.IntroductionIn Massachusetts, syndromic surveillance (SyS) data have been used to monitor injection drug use and acute opioid overdoses within EDs. Currently, Massachusetts Department of Public Health (MDPH) SyS captures over 90% of ED visits statewide. These real-time data contain rich free-text and coded clinical and demographic information used to categorize visits for population level public health surveillance.Other surveillance data have shown elevated rates of opioid overdose related ED visits, Emergency Medical Service incidents, and fatalities in Massachusetts from 2014-20171,2,3. Injection of illicitly consumed opioids is associated with an increased risk of infectious diseases, including HIV infection. An investigation of an HIV outbreak among persons reporting IDU identified homelessness as a social determinant for increased risk for HIV infection.MethodsTo accomplish our objectives staff used an existing MDPH SyS IDU syndrome definition4, developed a novel syndrome definition for HIV-related visits, and adapted Maricopa County's homelessness syndrome definition. Syndromes were applied to Massachusetts ED data through the CDC’s BioSense Platform. Visits meeting the HIV and homelessness syndromes were randomly selected and reviewed to assess accuracy; inclusion and exclusion criteria were then revised to increase specificity. The final versions of all three syndrome definitions incorporate free-text elements from the chief complaint and triage notes, as well as International Statistical Classification of Diseases and Related Health Problems, 9th (ICD-9) and 10th Revision (ICD-10) diagnostic codes. Syndrome categories were not mutually exclusive, and all reported visits occurring at Massachusetts EDs were included in the analysis.Syndromes CreatedFor the HIV infection syndrome definition, we incorporated the free-text term “HIV” in both the chief complaint and triage notes. Visit level review demonstrated that the following exclusions were needed to reduce misspellings, inclusion of partial words, and documentation of HIV testing results: “negative for HIV”, “HIV neg”, “negative test for HIV”, “hive”, “hivies”, and “vehivcle”. Additionally, the following diagnostic codes were incorporated: V65.44 (Human immunodeficiency virus [HIV] counseling), V08 (asymptomatic HIV infection status), V01.79 (contact with or exposure to other viral diseases), 795.71 (nonspecific serologic evidence of HIV), V73.89 (special screening examination for other specified viral diseases), 079.53 (HIV, type 2 [HIV-2]), Z20.6 (contact with and (suspected) exposure to HIV), Z71.7 (HIV counseling), B20 (HIV disease), Z21 (asymptomatic HIV infection status), R75 (inconclusive laboratory evidence of HIV), Z11.4 (encounter for screening for HIV), and B97.35 (HIV-2 as the cause of diseases classified elsewhere).Building on the Maricopa County homeless syndrome definition, we incorporated a variety of free-text inclusion and exclusion terms. To meet this definition visits had to mention: “homeless”, or “no housing”, or, “lack of housing”, or “without housing”, or “shelter” but not animal and domestic violence shelters. We also selected the following ICD-10 codes for homelessness and inadequate housing respectively, Z59.0 and Z59.1.We analyzed MDPH SyS data for visits occurring from January 1, 2016 through June 30, 2018. Rates per 10,000 ED visits categorized as IDU, HIV, or homeless were calculated. Subsequently, visits categorized as IDU, HIV, and meeting both IDU and HIV syndrome definitions (IDU+HIV) were stratified by homelessness.ResultsSyndrome Burden on EDThe MDPH SyS dataset contains 6,767,137 ED visits occurring during the study period. Of these, 82,819 (1.2%) were IDU-related, 13,017 (0.2%) were HIV-related, 580 (<0.01%) were related to IDU + HIV, and 42,255 visits (0.6%) were associated with homelessness.The annual rate of IDU-related visits increased 15% from 2016 through June of 2018 (from 113.63 to 130.57 per 10,000 visits); while rates of HIV-related and IDU + HIV-related visits remained relatively stable. The overall rate of visits associated with homelessness increased 47% (from 49.99 to 73.26 per 10,000 visits).Rates of IDU, HIV, and IDU + HIV were significantly higher among visits associated with homelessness. Among visits that met the homeless syndrome definition compared to those that did not: the rate of IDU-related visits was 816.0 versus 118.03 per 10,000 ED visits (X2= 547.12, p<0. 0001); the rate of visits matching the HIV syndrome definition was 145.54 versus 18.44 per 10,000 ED visits (X2= 99.33, p<0.0001); and the rate of visits meeting the IDU+HIV syndrome definition was 15.86 versus 0.76 per 10,000 visits (X2= 13.72, p= 0.0002).ConclusionsMassachusetts is experiencing an increasing burden of ED visits associated with both IDU and homelessness that parallels increases in opioid overdoses. Higher rates of both IDU and HIV-related visits were associated with homelessness. An understanding of the intersection between opioid overdoses, IDU, HIV, and homelessness can inform expanded prevention efforts, introduction of alternatives to ED care, and increase consideration of housing status during ED care.Continued surveillance for these syndromes, including collection and analysis of demographic and clinical characteristics, and geographic variations, is warranted. These data can be useful to providers and public health authorities for planning healthcare services.References1. Vivolo-Kantor AM, Seth P, Gladden RM, et al. Vital Signs: Trends in Emergency Department Visits for Suspected Opioid Overdoses — United States, July 2016–September 2017. MMWR Morbidity and Mortality Weekly Report 2018; 67(9);279–285 DOI: http://dx.doi.org/10.15585/mmwr.mm6709e12. Massachusetts Department of Public Health. Chapter 55 Data Brief: An assessment of opioid-related deaths in Massachusetts, 2011-15. 2017 August. Available from: https://www.mass.gov/files/documents/2017/08/31/data-brief-chapter-55-aug-2017.pdf3. Massachusetts Department of Public Health. MA Opioid-Related EMS Incidents 2013-September 2017. 2018 Feb. Available from: https://www.mass.gov/files/documents/2018/02/14/emergency-medical-services-data-february-2018.pdf4. Bova, M. Using emergency department (ED) syndromic surveillance to measure injection-drug use as an indicator for hepatitis C risk. Powerpoint presented at: 2017 Northeast Epidemiology Conference. 2017 Oct 18 – 20; Northampton, Massachusetts, USA.


Sign in / Sign up

Export Citation Format

Share Document