Performance evaluation of throat type updraft biomass gasifier using different biomass fuels

2021 ◽  
Vol 45 (03) ◽  
pp. 6-12
Author(s):  
D. K. Vyas ◽  
J. Sravankumar ◽  
J. J. Chavda

A biomass gasifier converts solid fuel such as wood waste, saw-dust briquettes and agro-residues into a gaseous fuel through a thermo-chemical process and the resultant gas can be used for thermal and power generation applications. The present research aims to evaluate the updraft biomass gasifier using different biomass for thermal application. The capacity of updraft gasifier was a 5-10 kg.h-1 and three types of biomass: maize cobs, sized wood and saw dust briquettes were used as fuel for producing producer gas by thermal application. The maximum carbon monoxide (CO), hydrogen (H2) and Methane (CH4) found were 14.8, 12.7 and 3.9%, 14.6, 13.7 and 3.9 % and 14.2, 13.5 and 3.9% at 5 kg.h-1 biomass consumption rate, respectively using maize cobs, sized wood and saw dust briquettes as fuel. The maximum and minimum producer gas calorific value was found 1120 and 1034 kcal.m-3; 1139 and 1034 kcal.m-3 and 1123 and 1036 kcal.m-3 at biomass consumption rate of 5 and 10 kg.h-1 using maize cobs, sized wood and saw dust briquettes as fuel respectively. The maximum gasifier efficiency of 77.94, 70.26 and 69.60% was found at the biomass consumption rate of 5 kg.h-1 using maize cobs, sized wood and saw dust briquettes as fuel, respectively. The minimum gasifier efficiency of 72.72, 64.49 and 64.90 % was found at the biomass consumption rate of 10 kg.h-1 using maize cobs, sized wood and saw dust briquettes as fuel in the system, respectively. The maximum overall thermal efficiency of 29.60, 30.65 and 23.69 % were found at the biomass consumption rates of 8, 7 and 7 kg.h-1 using maize cobs, sized wood and saw dust briquettes, respectively.

2016 ◽  
Vol 99 ◽  
pp. 1253-1261 ◽  
Author(s):  
V.S. Yaliwal ◽  
N.R. Banapurmath ◽  
R.S. Hosmath ◽  
S.V. Khandal ◽  
Wojciech M. Budzianowski

2021 ◽  
Vol 45 (01) ◽  
pp. 19-25
Author(s):  
D. K. Vyas ◽  
N. Seth ◽  
J. J. Chavda

A biomass combustor based dryer was evaluated with different biomass for drying of ginger. Biomass combustor based dryer consists of fuel hopper, combustion chamber, heat exchanger, grate for proper combustion of the combustible gas, chimney, ambient air inlet, hot air outlet and drying chamber. The system was evaluated at five fuel consumption rate (1 to 5 kg.h–1) and five air flow rate (100, 150, 200, 300 and 400 m3.h–1) using maize cobs, sized wood and saw dust briquettes for ginger drying. The experimental performances show that the hot air temperature inside the dryer vary between 36 to 81ºC for maize cobs, 53 to 85ºC for sized wood and 49 to 87ºC for biomass briquettes at tested air flow rate and fuel consumption rate in the system. The maximum efficiency of the system was found at the fuel consumption rate of 1 kg.h–1 and 400 m3.h–1 air flow rate using maize cobs, sized wood and saw dust briquettes as fuel respectively. The cost of operation of ginger drying at 1 kg.h–1 fuel consumption rate and 400 m3/h air flow rate was Rs. 32.76, 34.26, 34.76 and 55 per hour using maize cobs, sized wood, saw dust briquettes and mechanical drying system, respectively. Hence, the drying of ginger in biomass combustor based dryer using maize cobs at 1 kg.h–1 fuel consumption rate and 400 m3/h air flow rate resulted in better performance.


2016 ◽  
Vol 854 ◽  
pp. 142-147
Author(s):  
K.C. Keerthivasan ◽  
S. Nandhakumar

Bio mass was the fuel used for combustion and produce thermal energy. Gasification was a thermo chemical process it convert solid fuel into gaseous fuel. Gasification is the operation used to produce the combustible gas by burning solid biomass, that combustible gas is also named as producer gas. We are using downdraft gasifier to generate producer gas, why because the down draft gasifier produce a lesser amount of tar content and minimum pressure drop. In our country, large amount of solid waste like coconut shell, groundnut shell, carpentry wastage, bagasse this kind of waste is easily combustible biomass. So we can use that combustible waste to run the down draft gasifier to produce the producer gas. We have fabricated the down draft gasifier with 3.5kW power generation. Performance of gasifier has been analysed in-terms of different zone temperatures and pressure drop, wood consumption this things would be experimentally investigated.


2011 ◽  
Vol 110-116 ◽  
pp. 1758-1761
Author(s):  
Pushpa Jha ◽  
Pramod Yadav

Briquettes produced from agro-residues are fairly good substitute for coal, lignite and firewood. Briquettes from saw dust have high specific density of 1400 kg/m3 compared to bulk density of 210 kg/m3 (approx.) of loose saw dust. Loading/unloading, transportation and storage costs of agro-residues are drastically reduced if they are converted in the form of briquettes. Formation of briquettes at the very site of its production stops air pollution to a large extent. Hence briquetting of saw dust produces renewable and environment friendly source of energy. In this paper an attempt is made to design and fabricate briquetting machine for saw dust on lab scale to produce briquettes at the rate of 7kg/hr.Effect of moisture content in saw dust and binders used have been studied on briquette density, power consumption/kg of briquette produced and calorific value/kg of briquette. Thermal efficiency of chulha (local stove) using prepared briquette was obtained to be 5%.


2005 ◽  
Vol 289 (1) ◽  
pp. H295-H300 ◽  
Author(s):  
Masahiro Shibata ◽  
Shigeru Ichioka ◽  
Akira Kamiya

To examine the effects of vascular tone reduction on O2 consumption of the vascular wall, we determined the O2 consumption rates of arteriolar walls under normal conditions and during vasodilation induced by topical application of papaverine. A phosphorescence quenching technique was used to quantify intra- and perivascular Po2 in rat cremaster arterioles with different branching orders. Then, the measured radial Po2 gradients and a theoretical model were used to estimate the O2 consumption rates of the arteriolar walls. The vascular O2 consumption rates of functional arterioles were >100 times greater than those observed in in vitro experiments. The vascular O2 consumption rate was highest in first-order (1A) arterioles, which are located upstream, and sequentially decreased downstream in 2A and 3A arterioles under normal conditions. During papaverine-induced vasodilation, on the other hand, the O2 consumption rates of the vascular walls decreased to similar levels, suggesting that the high O2 consumption rates of 1A arterioles under normal conditions depend in part on the workload of the vascular smooth muscle. These results strongly support the hypothesis that arteriolar walls consume a significant amount of O2 compared with the surrounding tissue. Furthermore, the reduction of vascular tone of arteriolar walls may facilitate an efficient supply of O2 to the surrounding tissue.


Aerospace ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 327
Author(s):  
Ioannis Templalexis ◽  
Ioannis Lionis ◽  
Nikolaos Christou

The Hellenic Air Force (HAF) operates both EMB-145 and EMB-135 LR versions of Embraer aircraft, used in surveillance and civil missions respectively. These aircraft are equipped with the same version of Rolls Royce, AE 3007 turbofan engine. This study aims to quantify and compare the life consumption rate of this engine when installed in each of the two aircraft variants. Two typical missions, one for each variant, were constructed based on mission profile data dictated by the aircraft commanders. For each mission profile segment, corresponding engine data were matched out of the engine recordings archives held by the Hellenic Air Force. The life consumption rate was based on the Low Cycle Fatigue (LCF) and creep cumulative detrimental effect on the rotor blades of the 1st High-Pressure Turbine stage. For the LCF, the rainflow method was used to determine the respective loading cycles, whereas the Larson - Miller parameter method was used to determine the consumed life fractions due to creep. The main conclusion of the study was that the engine when installed in the EMB-145 military variant, is much more loaded. Despite the fact absolute life consumption values could hide a great level of uncertainty, the comparative outcomes wherein errors are, to a certain extent, cancelled out, could be used as a rule of thumb when monitoring engine life consumption rates.


1996 ◽  
Vol 121 (4) ◽  
pp. 722-729 ◽  
Author(s):  
Kevin I. Segall ◽  
Martin G. Scanlon

The first goal of this study was to determine the packaging film O2 permeability required to maintain a steady-state O2 concentration of 3% in modified-atmosphere packaging (MAP) of minimally processed romaine lettuce (Lactuca sativa L.). The second goal of the study was to determine the extent to which MAP could preserve lettuce quality and consequently extend product shelf life. Oxygen consumption rates of commercially prepared lettuce samples were determined in a closed system for each of three atmospheres (3% O2 combined with either 6%, 10%, or 14% CO2). Enzymatic, quadratic, and linear mathematical models were compared to determine which best described the respiratory data. The linear model was the most suitable and was used to predict the O2 consumption rate of the minimally processed romaine lettuce under the desired package headspace gas concentrations. The predicted O2 consumption rate was used to calculate the necessary O2 permeability for the packaging film. Packages (21.6 × 25.4 cm) were constructed from a polypropylene-polyethylene-laminate film with the appropriate O2 permeability. Packaged samples were stored under three modified atmospheres (MAs) (3% O2 combined with either 6%, 10%, or 14% CO2) for 20 days, and headspace gas concentrations, lettuce appearance, and color were evaluated every other day. Growth of pectinolytic and lactic acid bacteria was also studied. The O2 consumption rate of the lettuce decreased with increasing CO2 levels. The O2 levels in the MA packages equilibrated at 7% to 11%. Compared to a control atmosphere of air, MAP delayed the development of tissue discoloration. Preliminary results indicated no effect of MAP on microbial growth. Of the three CO2 levels, 10% was slightly more effective than 6% and 14%. Critical choice of packaging permeabilities combined with MAP maintained the quality of minimally processed romaine lettuce and thereby increased shelf life by about 50%.


2017 ◽  
Vol 168 (1) ◽  
pp. 122-124
Author(s):  
Marek BRZEŻAŃSKI ◽  
Michał MARECZEK ◽  
Marek SUTKOWSKI ◽  
Wojciech SMUGA

Huge amount of by-products is still considered as waste and is simply disposed, for example by-product gas is usually flared. Political and social pressure to reduce air pollution and national needs for energy security make these waste fuels interesting for near-future power generation. Unfortunately most of these waste fuels, even when liquefied or gasified, have very low quality and can hardly be used in high-efficiency power systems. Among main challenges are low calorific value and composition fluctuation. Additionally very often there is a high content of sulphur, siloxanes, tars, etc., which have to be removed from the fuel. Modern 4-stroke gas engines designed for power generation applications provide very high efficiency, high reliability and availability. Unfortunately, these gas engines require high quality fuel with stable composition. Horus-Energia together with Cracow University of Technology developed a novel gas supply system HE-MUZG that can adapt to current gas quality and change engine settings accordingly.This article will present results from the HE-MUZG system tests on modern 4-stroke spark-ignition gas engine. Tests focus on low quality gas, such as gas with low calorific value, gas with very low methane number and gas with very big variations of calorific value. Test results compared with performance of that engine in the original configuration show huge improvements. Moreover the HE- MUZG system is easy to implement in commercial gensets.


2011 ◽  
Vol 382 ◽  
pp. 56-59
Author(s):  
Yong Hua Li ◽  
Jun Wang ◽  
Wei Ping Yan

In China, coal combustion to generate electric power is the primary method, the energy-saving and emission reduction is the urgent task. At present, the energy-saving dispatching trial method in some area evaluates energy-saving and emission reduction of coal combustion power generation according to power supply coal consumption rate only. But the power supply coal consumption rate can’t reflect the energy-saving and emission reduction effect of coal combustion power plant overall. For example, the same coal combustion unit, the coal consumption rate is difference when desulfuration system is operating or not; the coal consumption rate of the unit with SCR will be increased; the coal consumption rate of the air-cooled unit is higher than water-cooled unit; etc.. This paper considers synthetically coal consumption rate, pollution emission, water resource wastage, etc., establishes a integrated evaluation system, adopts factor analysis method, gets the integrated evaluation system and index of energy-saving and emission reduction of coal combustion power generation, evaluates energy-saving and emission reduction effect of 5 power plants reasonable. The results show that the index can reflect the energy-saving and emission reduction level of coal combustion power generation.


1995 ◽  
Vol 198 (2) ◽  
pp. 349-358 ◽  
Author(s):  
S Piller ◽  
R Henry ◽  
J Doeller ◽  
D Kraus

Callinectes sapidus and C. similis co-occur in estuarine waters above 15 salinity. Callinectes sapidus also inhabits more dilute waters, but C. similis is rarely found below 15 . Previous work suggests that C. sapidus may be a better hyperosmoregulator than C. similis. In this study, energy metabolism and the levels of transport-related enzymes in excised gills were used as indicators of adaptation to low salinity. Oxygen consumption rates and mitochondrial cytochrome content of excised gills increased in both species as acclimation salinity decreased, but to a significantly greater extent in C. similis gills. In addition, C. similis gills showed the same levels of carbonic anhydrase and Na+/K+-ATPase activities and the same degree of enzyme induction during low-salinity adaptation as has been reported for C. sapidus gills. However, hemolymph osmolality and ion concentrations were consistently lower in C. similis at low salinity than in C. sapidus. Therefore, although gills from low-salinity-acclimated C. similis have a higher oxygen consumption rate and more mitochondrial cytochromes than C. sapidus gills and the same level of transport-related enzymes, C. similis cannot homeostatically regulate their hemolymph to the same extent as C. sapidus.


Sign in / Sign up

Export Citation Format

Share Document