Recovery of Random Event Flows of Non-Destructive Testing Results by Mathematical Modeling Methods

Author(s):  
D. I. Shkolina ◽  
S. A. Beher
2015 ◽  
Vol 760 ◽  
pp. 651-656
Author(s):  
Constantin Stefan Petriceanu ◽  
Oana Virlan

This article deals with mathematical modeling of non-destructive testing of layered materials. Latest research in the nondestructive control modeling with ultrasound waves recommends, for a greater productivity, the use of layer waves Lamb type due to their properties to propagate in solid materials on long distances without any significant attenuation. In the first part it is shown and justified the usage of the choice of Lamb waves to control this type of material. Then follows the theoretical aspects of the modeling and the simulation of the propagation of Lamb waves in layered materials using the mathematical formalism of wave propagation characterization with a vector of type S called slowness vector. Afterwards the mathematical results are presented with the equation of motion within the considered hypothesis, the hypothesis determined in any point of the space of important acoustic parameters in nondestructive testing (in particular the amplitude of the reflected wave quasi-longitudinal wave) based on the known characteristics of the incipient vector (initial impulse). Then follows validation of the developed model based on some simulations using a specialized software. Finally conclusions are presented and prospects for the development of the method.


2013 ◽  
Vol 64 (2) ◽  
pp. 21001 ◽  
Author(s):  
Jean-Luc Bodnar ◽  
Jean-Jacques Metayer ◽  
Kamel Mouhoubi ◽  
Vincent Detalle

2020 ◽  
pp. 54-59
Author(s):  
A. A. Yelizarov ◽  
A. A. Skuridin ◽  
E. A. Zakirova

A computer model and the results of a numerical experiment for a sensitive element on a planar mushroom-shaped metamaterial with cells of the “Maltese cross” type are presented. The proposed electrodynamic structure is shown to be applicable for nondestructive testing of geometric and electrophysical parameters of technological media, as well as searching for inhomogeneities in them. Resonant frequency shift and change of the attenuation coefficient value of the structure serve as informative parameters.


2015 ◽  
Vol 7 (2) ◽  
pp. 1428-1439
Author(s):  
Khurshed Alam ◽  
Md. Sayeedur Rahman ◽  
Md. Mostafizur Rahman ◽  
S. M. Azaharul Islam

A powerful non-destructive testing (NDT) technique is adopted to study the internal defects and elemental distribution/homogeneity and porosity of aerated brick and EPS aggregate poly brick samples. In the present study the internal defects like homogeneity, porosity, elemental distribution, EPS aggregate and aerator distributor in the test samples have been observed by the measurement of gray value/optical density of the neutron radiographic images of these samples. From this measurement it is found that the neutron intensity/optical density variation with the pixel distance of the AOI of the NR images in both expanded polystyrene (EPS) aggregate poly brick and aerated brick samples comply almost same in nature with respect to the whole AOI but individually each AOI shows different nature from one AOI to another and it confirms that the elemental distribution within a AOI is almost homogeneous. Finally it was concluded that homogeneity, elemental distribution in the EPS aggregate poly brick sample is better than that of the aerated brick sample. 


Sign in / Sign up

Export Citation Format

Share Document