PROGNOSIS OF BREAST CANCER BASED ON A FUZZY CLASSIFICATION METHOD

2020 ◽  
Vol 4 (5) ◽  
pp. 805-812
Author(s):  
Riska Chairunisa ◽  
Adiwijaya ◽  
Widi Astuti

Cancer is one of the deadliest diseases in the world with a mortality rate of 57,3% in 2018 in Asia. Therefore, early diagnosis is needed to avoid an increase in mortality caused by cancer. As machine learning develops, cancer gene data can be processed using microarrays for early detection of cancer outbreaks. But the problem that microarray has is the number of attributes that are so numerous that it is necessary to do dimensional reduction. To overcome these problems, this study used dimensions reduction Discrete Wavelet Transform (DWT) with Classification and Regression Tree (CART) and Random Forest (RF) as classification method. The purpose of using these two classification methods is to find out which classification method produces the best performance when combined with the DWT dimension reduction. This research use five microarray data, namely Colon Tumors, Breast Cancer, Lung Cancer, Prostate Tumors and Ovarian Cancer from Kent-Ridge Biomedical Dataset. The best accuracy obtained in this study for breast cancer data were 76,92% with CART-DWT, Colon Tumors 90,1% with RF-DWT, lung cancer 100% with RF-DWT, prostate tumors 95,49% with RF-DWT, and ovarian cancer 100% with RF-DWT. From these results it can be concluded that RF-DWT is better than CART-DWT.  


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Jinyu Cong ◽  
Benzheng Wei ◽  
Yunlong He ◽  
Yilong Yin ◽  
Yuanjie Zheng

Breast cancer has been one of the main diseases that threatens women’s life. Early detection and diagnosis of breast cancer play an important role in reducing mortality of breast cancer. In this paper, we propose a selective ensemble method integrated with the KNN, SVM, and Naive Bayes to diagnose the breast cancer combining ultrasound images with mammography images. Our experimental results have shown that the selective classification method with an accuracy of 88.73% and sensitivity of 97.06% is efficient for breast cancer diagnosis. And indicator R presents a new way to choose the base classifier for ensemble learning.


2013 ◽  
Vol 58 (3) ◽  
pp. 175-184 ◽  
Author(s):  
Daniele Soria ◽  
Jonathan M. Garibaldi ◽  
Andrew R. Green ◽  
Desmond G. Powe ◽  
Christopher C. Nolan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document