USER CENTERED DESIGN PROCESS OF OSAMI-D - Developing User Interfaces for a Remote Ergometer Training Application

2021 ◽  
Vol 11 (8) ◽  
pp. 448
Author(s):  
Katie Aylward ◽  
Joakim Dahlman ◽  
Kjetil Nordby ◽  
Monica Lundh

Maritime user interfaces for ships’ bridges are highly dependent on the context in which they are used, and rich maritime context is difficult to recreate in the early stages of user-centered design processes. Operations in Arctic waters where crews are faced with extreme environmental conditions, technology limitations and a lack of accurate navigational information further increase this challenge. There is a lack of research supporting the user-centered design of workplaces for hazardous Arctic operations. To meet this challenge, this paper reports on the process of developing virtual reality-reconstructed operational scenarios to connect stakeholders, end-users, designers, and human factors specialists in a joint process. This paper explores how virtual reality-reconstructed operational scenarios can be used as a tool both for concept development and user testing. Three operational scenarios were developed, implemented in a full mission bridge simulator, recreated in virtual reality (VR), and finally tested on navigators (end-users). Qualitative data were captured throughout the design process and user-testing, resulting in a thematic analysis that identified common themes reflecting the experiences gained throughout this process. In conclusion, we argue that operational scenarios, rendered in immersive media such as VR, may be an important and reusable asset when supporting maritime design processes and in maritime training and education.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2804
Author(s):  
Silvia Imbesi ◽  
Sofia Scataglini

Smart clothing plays a big role to foster innovation and to. boost health and well-being, improving the quality of the life of people, especially when addressed to niche users with particular needs related to their health. Designing smart apparel, in order to monitor physical and physiological functions in older users, is a crucial asset that user centered design is exploring, balancing needs expressed by the users with technological requirements related to the design process. In this paper, the authors describe a user centered methodology for the design of smart garments based on the evaluation of users’ acceptance of smart clothing. This comparison method can be considered as similar to a simplified version of the quality function deployment tool, and is used to evaluate the general response of each garment typology to different categories of requirements, determining the propensity of the older user to the utilization of the developed product. The suggested methodology aims at introducing in the design process a tool to evaluate and compare developed solutions, reducing complexity in design processes by providing a tool for the comparison of significant solutions, correlating quantitative and qualitative factors.


2021 ◽  
Author(s):  
Jeonghwan Hwang ◽  
Taeheon Lee ◽  
Honggu Lee ◽  
Seonjeong Byun

BACKGROUND Despite the unprecedented performances of deep learning algorithms in clinical domains, full reviews of algorithmic predictions by human experts remain mandatory. Under these circumstances, artificial intelligence (AI) models are primarily designed as clinical decision support systems (CDSSs). However, from the perspective of clinical practitioners, the lack of clinical interpretability and user-centered interfaces block the adoption of these AI systems in practice. OBJECTIVE The aim of this study was to develop an AI-based CDSS for assisting polysomnographic technicians in reviewing AI-predicted sleep staging results. This study proposed and evaluated a CDSS that provides clinically sound explanations for AI predictions in a user-centered fashion. METHODS User needs for the system were identified during interviews with polysomnographic technicians. User observation sessions were conducted to understand the workflow of the practitioners during sleep scoring. Iterative design process was performed to ensure easy integration of the tool into clinical workflows. Then, we evaluated the system with polysomnographic technicians. We measured the improvements in sleep staging accuracies after adopting our tool and assessed qualitatively how the participants perceived and used the tool. RESULTS The user study revealed that technicians desire explanations relevant to key electroencephalogram (EEG) patterns for sleep staging when assessing the correctness of the AI predictions. Here, technicians could evaluate whether AI models properly locate and use those patterns during prediction. Based on this, information in AI models that is closely related to sleep EEG patterns was formulated and visualized during the iterative design process. Furthermore, we developed a different visualization strategy for each pattern based on the way the technicians interpreted the EEG recordings with these patterns during their workflows. Generally, the tool evaluation results from the nine polysomnographic technicians were positive. Quantitatively, technicians achieved better classification performances after reviewing the AI-generated predictions with the proposed system; classification accuracies measured with Macro-F1 scores improved from 60.20 to 62.71. Qualitatively, participants reported that the provided information from the tool effectively supported them, and they were able to develop notable adoption strategies for the tool. CONCLUSIONS Our findings indicate that formulating clinical explanations for automated predictions using the information in the AI with a user-centered design process is an effective strategy for developing a CDSS for sleep staging.


2017 ◽  
Vol 3 (1) ◽  
pp. 39-43 ◽  
Author(s):  
Ekaterina Ivanova ◽  
Michael Minge ◽  
Henning Schmidt ◽  
Manfred Thüring ◽  
Jörg Krüger

Abstract:Robotic therapy devices have been an important part of clinical neurological rehabilitation for several years. Until now such devices are only available for patients receiving therapy inside rehabilitation hospitals. Since patients should continue rehabilitation training after hospital discharge at home, intelligent robotic rehab devices could help to achieve this goal. This paper presents therapeutic requirements and early phases of the user-centered design process of the patient’s work station as part of a novel robot-based system for motor telerehabilitation.


Author(s):  
Loris Barbieri ◽  
Agostino Angilica ◽  
Fabio Bruno ◽  
Maurizio Muzzupappa

The importance of participatory design (PD) is progressively increasing thanks to its capacity to explore a wide variety of concepts, thus increasing the opportunity to create a successful product. In fact the design process should not be a solo activity, as designers often need inputs and other points of view, especially from end-users. According to the ultimate idea of PD, end-users are actively involved in the various activities of the product development to ensure that their needs and desires are satisfied. This paper presents a novel approach to the participatory design of product interfaces in a user-centered design (UCD) process. The approach is based on an interactive tool that allows end-users to design custom user interfaces of household appliances taking advantage of their own needs and experiences. The tool incorporates the analytical and more abstract knowledge of the designers codified in the form of aesthetical, technological and manufacturing constraints (i.e., limitations in the number and geometry of interface components, a limited number of colors, a discretization of the area where interface widgets are placed). This solution allows the end-users to directly design their favorite interface without the interference of any other subject. Through an accurate analysis of the choices done by the users, the designers are able to access to the deepest level of the users’ expression in order to catch their latent needs and tacit knowledge. The tool has been designed in order to make possible to immediately perform usability tests on the designed interface by using a Mixed Reality prototype. The paper describes the development of the tool and proposes a methodology that has been specifically addressed to include this tool in a design process based on UCD principles. Both the tool and the methodology are presented through the description of a case-study related to the redesign of a washing machine dashboard. Experimental results show that the proposed tool can be an effective support to design product interfaces during PD sessions.


Author(s):  
Jayde King ◽  
John Kleber ◽  
Ashlee Harris ◽  
Barbara Chaparro ◽  
Beth Blickensderfer

General Aviation flight operations have been negatively affected by the slow decreasing weather related accident rate for the last 20 years. Upon further investigation, research suggests, that poor preflight planning and a lack of aviation weather experience and knowledge may be contributing factors to the stagnant weather related accident rate. Our team developed a Preflight Weather Decision Support Tool (PWDST) to help novice pilots access, interpret, and apply weather information. We used a user-centered design process which involved an initial task analysis, low-fidelity prototyping, low-fidelity usability testing, user interviews and expert review. This study assessed and compared the perceived usability, difficulty, and the system assistance satisfaction of the PWDST. Participants (n=9) completed a usability study and a series of surveys during, as well as, after the completion of the preflight planning scenario. A series of Mann-Whitney U Tests were conducted to compare the difference between Private Pilot and Certified Flight Instructors (CFI) perceived usability, difficulty, and system assistance satisfaction ratings. Results indicated, there were no significant differences between group ratings. Overall, both groups reported above average usability, system assistance and low difficulty rating for the PWDST. Future research and possible implications are discussed.


Author(s):  
Justin Lai ◽  
Tomonori Honda ◽  
Maria C. Yang

AbstractUser-centered approaches to design can guide teams toward an understanding of users and aid teams in better posing design problems. This paper investigates the role of user-centered design approaches in design process and outcome within the context of design team projects. The value of interaction with users is examined at several stages throughout the design process. The influence of user-centered design on the performance of design teams is also explored. Results suggest that the quantity of interactions with users and time spent interacting with users alone is not linked with better design outcome, but that iterative evaluation of concepts by users may be of particular value to design prototypes. Suggestions are made based on the reflections from the authors after conducting this study.


i-com ◽  
2015 ◽  
Vol 14 (1) ◽  
pp. 5-17
Author(s):  
Benedikt Loepp ◽  
Katja Herrmanny ◽  
Jürgen Ziegler

AbstractTo increase controllability and transparency in recommender systems, recent research has been putting more focus on integrating interactive techniques with recommender algorithms. In this paper, we propose a model of interactive recommending that structures the different interactions users can have with recommender systems. Furthermore, as a novel approach to interactive recommending, we describe a technique that combines faceted information filtering with different algorithmic recommender techniques. We refer to this approach as blended recommending. We also present an interactive movie recommender based on this approach and report on its user-centered design process, in particular an evaluation study in which we compared our system with a standard faceted filtering system. The results indicate a higher level of perceived user control, more detailed preference settings, and better suitability when the search goal is vague.


Sign in / Sign up

Export Citation Format

Share Document