Automatic Segmentation of MR Brain Tumor Images using Support Vector Machine in Combination with Graph Cut

Author(s):  
Elisabetta Binaghi ◽  
Massimo Omodei ◽  
Valentina Pedoia ◽  
Sergio Balbi ◽  
Desiree Lattanzi ◽  
...  
2019 ◽  
Vol 19 (01) ◽  
pp. 1940002 ◽  
Author(s):  
K. V. AHAMMED MUNEER ◽  
K. PAUL JOSEPH

Magnetic resonance imaging (MRI) plays an integral role among the advanced techniques for detecting a brain tumor. The early detection of brain tumor with proper automation algorithm results in assisting oncologists to make easy decisions for diagnostic purposes. This paper presents an automatic classification of MR brain images in normal and malignant conditions. The feature extraction is done with gray-level co-occurrence matrix, and we proposed a feature reduction technique based on statistical test which is preceded by principal component analysis (PCA). The main focus of the work is to establish the statistical significance of the features obtained after PCA, thereby selecting significant feature values for subsequent classification. For that, a [Formula: see text]-test is performed which yielded a [Formula: see text]-value of 0.05. Finally, a comparative study using [Formula: see text]-nearest neighbor (kNN), support vector machine and artificial neural network (ANN)-based supervised classifiers is performed. In this work, we could achieve reasonably good sensitivity, specificity and accuracy for all the classifiers. The ANN classifier gives better performance with sensitivity of 97.33%, specificity of 97.42% and accuracy of 98.66% on the whole brain atlas database. The experimental results obtained are comparable to the other recent state-of-the-art.


Author(s):  
Alok Sarkar ◽  
Md. Maniruzzaman ◽  
Md. Shamim Ahsan ◽  
Mohiuddin Ahmad ◽  
Mohammad Ismat Kadir ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Wentao Wu ◽  
Daning Li ◽  
Jiaoyang Du ◽  
Xiangyu Gao ◽  
Wen Gu ◽  
...  

Among the currently proposed brain segmentation methods, brain tumor segmentation methods based on traditional image processing and machine learning are not ideal enough. Therefore, deep learning-based brain segmentation methods are widely used. In the brain tumor segmentation method based on deep learning, the convolutional network model has a good brain segmentation effect. The deep convolutional network model has the problems of a large number of parameters and large loss of information in the encoding and decoding process. This paper proposes a deep convolutional neural network fusion support vector machine algorithm (DCNN-F-SVM). The proposed brain tumor segmentation model is mainly divided into three stages. In the first stage, a deep convolutional neural network is trained to learn the mapping from image space to tumor marker space. In the second stage, the predicted labels obtained from the deep convolutional neural network training are input into the integrated support vector machine classifier together with the test images. In the third stage, a deep convolutional neural network and an integrated support vector machine are connected in series to train a deep classifier. Run each model on the BraTS dataset and the self-made dataset to segment brain tumors. The segmentation results show that the performance of the proposed model is significantly better than the deep convolutional neural network and the integrated SVM classifier.


Author(s):  
Soobia Saeed ◽  
Afnizanfaizal Abdullah

Medicinal images assume an important part in the diagnosis of tumors as well as Cerebrospinal fluid (CSF) leak. Similarly, MRI could be the cutting-edge regenerative imaging technology that allows for a sectional angle perspective of the body that gives specialists convenience and will inspect the person-concerned. In this paper, the author has attempted the strategy to classify MRI images at the beginning of production to have a tumor or recognition. The study aims to address the aforementioned problems associated with brain cancer with a CSF leak. This research, the author focuses on brain tumor and applies the statistical model for the testing and also discusses the images of a brain tumor. They can judge the tumor region by conducting a comparative image analysis and applying Histogram function afterwards to construct a classifier that could be prepared to predict tumor and non-tumor MRI examinees based on the support vector machine. Our system is capable of detecting the right region that a pathologist also highlights. In the future, this should be more driven with the objective that tumors can be arranged and describe the solution in the medical terms implementation with gives some predictions about the future generated by modified technology. 


Sign in / Sign up

Export Citation Format

Share Document