scholarly journals The Dynamic Sensor Data Description and Data Format Conversion Language

Author(s):  
Gergely Mezei ◽  
Ferenc A. Somogyi ◽  
Károly Farkas
2012 ◽  
Vol 39 (9) ◽  
pp. 0905008
Author(s):  
徐静 Xu Jing ◽  
江阳 Jiang Yang ◽  
周竹雅 Zhou Zhuya ◽  
李恒文 Li Hengwen ◽  
王顺艳 Wang Shunyan

Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4712
Author(s):  
Pei Shi ◽  
Guanghui Li ◽  
Yongming Yuan ◽  
Liang Kuang

Wireless sensor networks (WSNs) are susceptible to faults in sensor data. Outlier detection is crucial for ensuring the quality of data analysis in WSNs. This paper proposes a novel improved support vector data description method (ID-SVDD) to effectively detect outliers of sensor data. ID-SVDD utilizes the density distribution of data to compensate SVDD. The Parzen-window algorithm is applied to calculate the relative density for each data point in a data set. Meanwhile, we use Mahalanobis distance (MD) to improve the Gaussian function in Parzen-window density estimation. Through combining new relative density weight with SVDD, this approach can efficiently map the data points from sparse space to high-density space. In order to assess the outlier detection performance, the ID-SVDD algorithm was implemented on several datasets. The experimental results demonstrated that ID-SVDD achieved high performance, and could be applied in real water quality monitoring.


2003 ◽  
Vol 1836 (1) ◽  
pp. 111-117
Author(s):  
Taek M. Kwon ◽  
Nirish Dhruv ◽  
Siddharth A. Patwardhan ◽  
Eil Kwon

Intelligent transportation system (ITS) sensor networks, such as road weather information and traffic sensor networks, typically generate enormous amounts of data. As a result, archiving, retrieval, and exchange of ITS sensor data for planning and performance analysis are becoming increasingly difficult. An efficient ITS archiving system that is compact and exchangeable and allows efficient and fast retrieval of large amounts of data is essential. A proposal is made for a system that can meet the present and future archiving needs of large-scale ITS data. This system is referred to as common data format (CDF) and was developed by the National Space Science Data Center for archiving, exchange, and management of large-scale scientific array data. CDF is an open system that is free and portable and includes self-describing data abstraction. Archiving traffic data by using CDF is demonstrated, and its archival and retrieval performance is presented for the Minnesota Department of Transportation–s 30-s traffic data collected from about 4,000 loop detectors around Twin Cities freeways. For comparison of the archiving performance, the same data were archived by using a commercially available relational database, which was evaluated for its archival and retrieval performance. This result is presented, along with reasons that CDF is a good fit for large-scale ITS data archiving, retrieval, and exchange of data.


Sign in / Sign up

Export Citation Format

Share Document