scholarly journals Review of investigations into the vadose zone’s variable state of saturation in connection with the assessment of radon potential in Bulgaria

2021 ◽  
Vol 50 (2) ◽  
pp. 47-51
Author(s):  
Bistra Kunovska ◽  
Mila Trayanova ◽  
Monika Mutovska ◽  
Simeon Valchev ◽  
Boyka Mihaylova

Natural radon (222Rn) is a radioactive noble gas that occurs as the immediate decay product of radium (226Ra), part of the 238U family, in the lithosphere. Radon is driven by advection and diffusion with soil gas throughout connected and water-unsaturated pores and/or cracks in permeable rocks and soils. The aim of the present study is to do a review of the existing so far research activities in Bulgaria in connection with the observation and/or evaluation of the degree of water saturation of the near-surface layer, and on that base to distinguish the up-to-date achievements in regards to the radon potential in situ evaluation. Due to this review, the studies in Bulgaria concerning moisture dynamics in the near-surface layers can be divided mainly into two groups. The first one investigates the hydraulic characteristics (parameters) of soils in the vadose zone. Based on that, conclusions or computer simulations for the saturation degree estimation can be drawn. The other group includes in situ observations by sensors on the change of moisture with time. The results of these studies may serve as a base for more precise moisture dynamics assessment at sites with specific radon potential tendencies.

2007 ◽  
Vol 7 (1) ◽  
pp. 139-149 ◽  
Author(s):  
S. S. Brown ◽  
W. P. Dubé ◽  
H. D. Osthoff ◽  
D. E. Wolfe ◽  
W. M. Angevine ◽  
...  

Abstract. The shallow mixing depth and vertical stratification of the lowest levels of the atmosphere at night has implications for the chemistry of nitrogen oxides emitted from the surface. Here we report vertical profiles of NO3, N2O5 and O3 measured from in-situ instruments on a movable carriage on a 300 m tower. The study offers high-resolution (<1 m) vertical distributions of both NO3 and N2O5 and shows that the nocturnal mixing ratios of these compounds vary widely over short vertical distance scales (10 m or less). Furthermore, there are systematic differences in the steady state lifetimes of NO3 and N2O5 and in the partitioning among nitrogen oxides between different near-surface layers. These differences imply that NO3 and N2O5 occupy distinct chemical regimes as a function of altitude, potentially serving as sinks for nitrogen oxides and O3 near the surface but as reservoirs of NOx and O3 aloft.


2006 ◽  
Vol 6 (5) ◽  
pp. 9431-9458 ◽  
Author(s):  
S. S. Brown ◽  
W. P. Dubé ◽  
H. D. Osthoff ◽  
D. E. Wolfe ◽  
W. M. Angevine ◽  
...  

Abstract. The shallow mixing depth and vertical stratification of the lowest levels of the atmosphere at night has implications for the chemistry of nitrogen oxides emitted from the surface. Here we report vertical profiles of NO3, N2O5 and O3 measured from in-situ instruments on a movable carriage on a 300 m tower. The study offers high-resolution (<1 m) vertical distributions of both NO3 and N2O5 and shows that the nocturnal mixing ratios of these compounds vary widely over short vertical distance scales (10 m or less). Furthermore, there are systematic differences in the steady state lifetimes of NO3 and NO5 and in the partitioning among nitrogen oxides between different near-surface layers. These differences imply that NO3 and N2O5 occupy distinct chemical regimes as a function of altitude, potentially serving as sinks for nitrogen oxides and O3 near the surface but as reservoirs of NOx and O3 aloft.


2015 ◽  
Vol 32 (8) ◽  
pp. 1536-1543 ◽  
Author(s):  
Henry C. Bittig ◽  
Arne Körtzinger

AbstractA yet unexplained drift of (some) oxygen optodes during storage/transport and thus significant deviations from factory/laboratory calibrations have been a major handicap for autonomous oxygen observations. Optode drift appears to be systematic and is predominantly a slope effect due to reduced oxygen sensitivity. A small contribution comes from a reduced luminophore lifetime, which causes a small positive offset. A reliable in situ reference is essential to correct such a drift. Traditionally, this called for a ship-based reference cast, which poses some challenges for opportunistic float deployments. This study presents an easily implemented alternative using near-surface/in-air measurements of an Aanderaa optode on a 10-cm stalk and compares it to the more traditional approaches (factory, laboratory, and in situ deployment calibration). In-air samples show a systematic bias depending on the water saturation, which is likely caused by occasional submersions of the standard-height stalk optode. Linear regression of measured in-air supersaturation against in-water supersaturation (using ancillary meteorological data to define the saturation level) robustly removes this bias and thus provides a precise (0.2%) and accurate (1%) in situ correction that is available throughout the entire instrument’s lifetime.


Geophysics ◽  
2012 ◽  
Vol 77 (3) ◽  
pp. WA35-WA44 ◽  
Author(s):  
Norbert Péter Szabó ◽  
Mihály Dobróka ◽  
Dezső Drahos

The engineering geophysical sounding method has been applied for in situ investigation of unconsolidated near-surface formations since the 1990s. In this study, we offer an alternative to geophysical inversion methods for data processing. Factor analysis is applied to engineering geophysical sounding and cone penetration test data to extract information on water saturation of the shallow region. A linear correlation is indicated between water saturation and one of the new variables derived by factor analysis. We used a general formula for estimating water saturation and applied it on data measured in 12 shallow boreholes situated over a nuclear waste disposal site. We extended the statistical procedure to estimate the spatial distribution of water (air) saturation between the boreholes. We compared the statistical results to inversion estimations. The study showed that factor analysis gives a quick and reliable solution for the assessment of hydrogeological conditions in shallow prospecting sites.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Alexis P. Rodriguez ◽  
Kenneth L. Tanaka ◽  
Ali M. Bramson ◽  
Gregory J. Leonard ◽  
Victor R. Baker ◽  
...  

AbstractThe clockwise spiral of troughs marking the Martian north polar plateau forms one of the planet’s youngest megastructures. One popular hypothesis posits that the spiral pattern resulted as troughs underwent poleward migration. Here, we show that the troughs are extensively segmented into enclosed depressions (or cells). Many cell interiors display concentric layers that connect pole- and equator-facing slopes, demonstrating in-situ trough erosion. The segmentation patterns indicate a history of gradual trough growth transversely to katabatic wind directions, whereby increases in trough intersections generated their spiral arrangement. The erosional event recorded in the truncated strata and trough segmentation may have supplied up to ~25% of the volume of the mid-latitude icy mantles. Topographically subtle undulations transition into troughs and have distributions that mimic and extend the troughs’ spiraling pattern, indicating that they probably represent buried trough sections. The retention of the spiral pattern in surface and subsurface troughs is consistent with the megastructure’s stabilization before its partial burial. A previously suggested warm paleoclimatic spike indicates that the erosion could have occurred as recently as ~50 Ka. Hence, if the removed ice was redeposited to form the mid-latitude mantles, they could provide a valuable source of near-surface, clean ice for future human exploration.


Nature ◽  
2002 ◽  
Vol 416 (6876) ◽  
pp. 64-67 ◽  
Author(s):  
Toshihiro Ishikawa ◽  
Hiroyuki Yamaoka ◽  
Yoshikatsu Harada ◽  
Teruaki Fujii ◽  
Toshio Nagasawa

1998 ◽  
Vol 319 (1-2) ◽  
pp. 39-43 ◽  
Author(s):  
Z Swiatek ◽  
J.T Bonarski ◽  
R Ciach ◽  
Z.T Kuznicki ◽  
I.M Fodchuk ◽  
...  

2001 ◽  
Vol 4 (06) ◽  
pp. 455-466 ◽  
Author(s):  
A. Graue ◽  
T. Bognø ◽  
B.A. Baldwin ◽  
E.A. Spinler

Summary Iterative comparison between experimental work and numerical simulations has been used to predict oil-recovery mechanisms in fractured chalk as a function of wettability. Selective and reproducible alteration of wettability by aging in crude oil at an elevated temperature produced chalk blocks that were strongly water-wet and moderately water-wet, but with identical mineralogy and pore geometry. Large scale, nuclear-tracer, 2D-imaging experiments monitored the waterflooding of these blocks of chalk, first whole, then fractured. This data provided in-situ fluid saturations for validating numerical simulations and evaluating capillary pressure- and relative permeability-input data used in the simulations. Capillary pressure and relative permeabilities at each wettability condition were measured experimentally and used as input for the simulations. Optimization of either Pc-data or kr-curves gave indications of the validity of these input data. History matching both the production profile and the in-situ saturation distribution development gave higher confidence in the simulations than matching production profiles only. Introduction Laboratory waterflood experiments, with larger blocks of fractured chalk where the advancing waterfront has been imaged by a nuclear tracer technique, showed that changing the wettability conditions from strongly water-wet to moderately water-wet had minor impact on the the oil-production profiles.1–3 The in-situ saturation development, however, was significantly different, indicating differences in oil-recovery mechanisms.4 The main objective for the current experiments was to determine the oil-recovery mechanisms at different wettability conditions. We have reported earlier on a technique that reproducibly alters wettability in outcrop chalk by aging the rock material in stock-tank crude oil at an elevated temperature for a selected period of time.5 After applying this aging technique to several blocks of chalk, we imaged waterfloods on blocks of outcrop chalk at different wettability conditions, first as a whole block, then when the blocks were fractured and reassembled. Earlier work reported experiments using an embedded fracture network,4,6,7 while this work also studied an interconnected fracture network. A secondary objective of these experiments was to validate a full-field numerical simulator for prediction of the oil production and the in-situ saturation dynamics for the waterfloods. In this process, the validity of the experimentally measured capillary pressure and relative permeability data, used as input for the simulator, has been tested at strongly water-wet and moderately water-wet conditions. Optimization of either Pc data or kr curves for the chalk matrix in the numerical simulations of the whole blocks at different wettabilities gave indications of the data's validity. History matching both the production profile and the in-situ saturation distribution development gave higher confidence in the simulations of the fractured blocks, in which only the fracture representation was a variable. Experimental Rock Material and Preparation. Two chalk blocks, CHP8 and CHP9, approximately 20×12×5 cm thick, were obtained from large pieces of Rørdal outcrop chalk from the Portland quarry near Ålborg, Denmark. The blocks were cut to size with a band saw and used without cleaning. Local air permeability was measured at each intersection of a 1×1-cm grid on both sides of the blocks with a minipermeameter. The measurements indicated homogeneous blocks on a centimeter scale. This chalk material had never been contacted by oil and was strongly water-wet. The blocks were dried in a 90°C oven for 3 days. End pieces were mounted on each block, and the whole assembly was epoxy coated. Each end piece contained three fittings so that entering and exiting fluids were evenly distributed with respect to height. The blocks were vacuum evacuated and saturated with brine containing 5 wt% NaCl+3.8 wt% CaCl2. Fluid data are found in Table 1. Porosity was determined from weight measurements, and the permeability was measured across the epoxy-coated blocks, at 2×10–3 µm2 and 4×10–3 µm2, for CHP8 and CHP9, respectively (see block data in Table 2). Immobile water saturations of 27 to 35% pore volume (PV) were established for both blocks by oilflooding. To obtain uniform initial water saturation, Swi, oil was injected alternately at both ends. Oilfloods of the epoxy-coated block, CHP8, were carried out with stock-tank crude oil in a heated pressure vessel at 90°C with a maximum differential pressure of 135 kPa/cm. CHP9 was oilflooded with decane at room temperature. Wettability Alteration. Selective and reproducible alteration of wettability, by aging in crude oil at elevated temperatures, produced a moderately water-wet chalk block, CHP8, with similar mineralogy and pore geometry to the untreated strongly water-wet chalk block CHP9. Block CHP8 was aged in crude oil at 90°C for 83 days at an immobile water saturation of 28% PV. A North Sea crude oil, filtered at 90°C through a chalk core, was used to oilflood the block and to determine the aging process. Two twin samples drilled from the same chunk of chalk as the cut block were treated similar to the block. An Amott-Harvey test was performed on these samples to indicate the wettability conditions after aging.8 After the waterfloods were terminated, four core plugs were drilled out of each block, and wettability measurements were conducted with the Amott-Harvey test. Because of possible wax problems with the North Sea crude oil used for aging, decane was used as the oil phase during the waterfloods, which were performed at room temperature. After the aging was completed for CHP8, the crude oil was flushed out with decahydronaphthalene (decalin), which again was flushed out with n-decane, all at 90°C. Decalin was used as a buffer between the decane and the crude oil to avoid asphalthene precipitation, which may occur when decane contacts the crude oil.


Sign in / Sign up

Export Citation Format

Share Document