scholarly journals Wind Power Integration and Its Impact on Power Quality - A Didactic Approach

2020 ◽  
Vol 39 (2) ◽  
pp. 246-260
Author(s):  
Santos Kihwele

This paper presents a model of a wind power system integrated with realistic power system, with intention of using it in addressing power quality issues in relations to grid codes during steady-state operation transient-state operation i.e., presence of grid fault events. For that case, a didactic approach of the normal performance of power systems due to the connection of fixed-speed wind turbine with induction generators is used. A study of integrating wind farms will be presented, including the incidence of high inrush current due to switching capacitor banks, out-rush current and voltage sags due to nearby three phase faults. As mandatory for the grid codes regulation, the incidence on the power quality at the point of common coupling is analyzed too. As a result of the contingency study, it will be shown that capacitors bank and fault current limiter can help the wind farm to ride-through a fault.

2015 ◽  
Vol 737 ◽  
pp. 199-203
Author(s):  
Shao Hong Tsai ◽  
Yuan Kang Wu ◽  
Ching Yin Lee ◽  
Wen Ta Tsai

Modern wind turbine technology has been a great improvement over the past couple decades, leading to large scale wind power penetration. The increasing penetration of wind power resulted in emphasizing the importance of reliable and secure operation of power systems, especially in a weak power system. In this paper, the main wind turbine control schemes, the wind penetration levels and wind farm dynamic behavior for grid code compliance were investigated in the Penghu wind power system, a weak isolated power system.


2021 ◽  
Vol 16 (3) ◽  
pp. 245-250
Author(s):  
Giulio Lorenzini ◽  
Mehrdad Ahmadi Kamarposhti ◽  
Ahmed Amin Ahmed Solyman

Current methods to determine the wind farms maximum size do not consider the effect of new wind generation on the Voltage Stability Margins (VSMs). Installing wind power in one area may affect VSMs in other areas of the power system. Buses with high VSMs before wind power injection may be converted into weak buses after wind power injections in other parts of power systems, which may lead to limited future wind farms expansion in other areas. In this paper, two methods are proposed to determine two new wind farms maximum size in order to maximize wind power penetration level. In both methods, the size of any new wind farm is determined using an iterative process which is increased by a constant value. Proposed methods were used in the IEEE 14-bus power system. The results of applying these new methods indicate that the second method results in higher maximum sizes than the first method.


2013 ◽  
Vol 385-386 ◽  
pp. 1040-1044
Author(s):  
Lei Dong ◽  
Jian Kang Yang ◽  
Tian Jiao Pu ◽  
Hai Ming Zhou

Wind power penetration to power systems is increasing rapidly in the recent years due to its environmental benefit, while wind power fluctuation also brings some problems to power system operation which impacts the generation of conventional power units. For this reason, probabilistic optimal dispatching model based on multi-scenasio is developed in this paper. With the discretization of wind power fluctuations range, the scenario probability can be get by discretizing wind power prediction error distribution curves, at the same time considering the relevance of the prediction error of the adjacent periods in the time scale. By means of leading probability adjustment costs into objective function, the optimization result can consider the cost due to the fluctuation of wind power. The rationality and effectiveness of the proposed method is verified by testing and demonstrating IEEE-39 bus system with a wind farm.


2013 ◽  
Vol 391 ◽  
pp. 271-276
Author(s):  
Peng Li ◽  
Ning Bo Wang ◽  
De Zhi Chen ◽  
Xiao Rong Zhu ◽  
Yun Ting Song

Increasing penetration level of wind power integration has a significant impact on low-frequency oscillations of power systems. Based on PSD-BPA simulation software, time domain simulation analysis and eigenvalue analysis are employed to investigate its effect on power system low-frequency oscillation characteristic in an outward transmitting thermal generated power bundled with wind power illustrative power system. System damping enhances markedly and the risk of low-frequency oscillation reduce when the generation of wind farm increase. In addition, dynamic reactive power compensations apply to wind farm, and the simulation result indicates that it can improve dynamic stability and enhance the system damping.


2014 ◽  
Vol 536-537 ◽  
pp. 470-475
Author(s):  
Ye Chen

Due to the features of being fluctuant, intermittent, and stochastic of wind power, interconnection of large capacity wind farms with the power grid will bring about impact on the safety and stability of power systems. Based on the real-time wind power data, wind power prediction model using Elman neural network is proposed. At the same time in order to overcome the disadvantages of the Elman neural network for easily fall into local minimum and slow convergence speed, this paper put forward using the GA algorithm to optimize the weight and threshold of Elman neural network. Through the analysis of the measured data of one wind farm, shows that the forecasting method can improve the accuracy of the wind power prediction, so it has great practical value.


Author(s):  
Junrong Xia ◽  
Pan Zhao ◽  
Yiping Dai

Due to the intermittence and fluctuation of wind resource, the integration of large wind farms in a power grid introduces an additional stochastic component to power system scheduling. This always brings challenges to maintain the stability of power system. Integrating gas turbine units with wind farms can compensate their output fluctuation. In this paper, a methodology for the operation scheduling of a hybrid power system that consists of a large wind farm and gas turbine units is presented. A statistical model based on numerical weather prediction is used to forecast power output of the wind farm for the next 24 hours at quarter-hour intervals. Forecasts of wind power are used for optimizing the operation scheduling. In order to study the dynamic performance of the proposed hybrid power system, dynamic modeling of this hybrid power system is addressed. Wind farm and gas turbine units are integrated through an AC bus, and then connected to a power grid. An aggregated model of the wind farm and detailed models of gas turbine units are developed, and are implemented using MATLAB/Simulink. Simulation studies are carried out to evaluate the system performance using real weather data. The simulation results show that the proposed hybrid power system can compensate fluctuating wind power effectively and make wind power more reliable.


2013 ◽  
Vol 765-767 ◽  
pp. 2579-2585
Author(s):  
Min Jing Yang ◽  
Yan Li ◽  
Jin Yu Wen ◽  
Chun Fang Liu ◽  
Min Jie Zhu ◽  
...  

The high penetration of doubly-fed induction generators (DFIGs) entails a change in dynamics and operational characteristics of the power system, thus this paper investigates the small signal stability of the large-scale wind farm with DFIGs. The GE 1.5MW DFIG is modeled in power system analysis software package (PSASP), and a large-scale wind farm with DFIGs is established. Then, the two-area test system with four generators is applied to assess the effect of the large wind farm on power system inter-area oscillatory mode in which the penetration and the installation site of the wind farm are considered. Finally, the simulation results indicate that abundant penetration of DFIG-based wind power will improve the inter-area oscillatory, and the integration of wind farms with DFIGs in the receiving area makes the inter-area mode highly damped.


2012 ◽  
Vol 26 (25) ◽  
pp. 1246012 ◽  
Author(s):  
J. L. DOMÍNGUEZ-GARCÍA ◽  
O. GOMIS-BELLMUNT ◽  
F. BIANCHI ◽  
A. SUMPER

Small signal stability analysis for power systems with wind farm interaction is presented. Power systems oscillation modes can be excited by disturbance or fault in the grid. Variable speed wind turbines can be regulated to reduce these oscillations, stabilising the power system. A power system stabiliser (PSS) control loop for wind power is designed in order to increase the damping of the oscillation modes. The proposed power system stabiliser controller is evaluated by small signal analysis.


2011 ◽  
Vol 354-355 ◽  
pp. 989-992
Author(s):  
An Lin

Squirrel-cage induction generator (SCIG) has been widely utilized in large wind farms in China. However, the large wind farm composed of induction generators will cause obvious power system stability problems due to the dependency on reactive power. Doubly-fed induction generator (DFIG) has excellent dynamic characteristics of wind farm operations. With the increasing of wind power penetration in power systems, more and more wind farms use both SCIG and DFIG. This paper firstly analyzes the the dynamic characteristic of wind farm on power systems, especially in terms of the voltage stability. Then the interaction between the SCIGs and DFIGs is also investigated. A detailed simulation model of wind farms is presented by means of MATLAB. The simulation results demonstrate that the DFIG applications will improve the voltage stability of the wind farm largely and the low voltage ride through characteristics of SCIG to some extend.


2012 ◽  
Vol 608-609 ◽  
pp. 742-747
Author(s):  
Chun Hong Zhao ◽  
Lian Guang Liu ◽  
Zi Fa Liu ◽  
Ying Chen

The integration of wind farms has a significant impact on the power system reliability. An appropriate model used to assess wind power system reliability is needed. Establishing multi-objective models (wind speed model, wind turbine generator output model and wind farm equivalent model) and based on the non-sequential Monte Carlo simulation method to calculate risk indicators is a viable method for quantitatively assessing the reliability of power system including wind farms. The IEEE-RTS 79 test system and a 300MW wind farm are taken as example.The calculation resluts show that using the multi-objective models can improve accuracy and reduce error; the higher average wind speed obtains the better system reliabitity accordingly.


Sign in / Sign up

Export Citation Format

Share Document