INVESTIGATION OF EFFECT OF CASTING SPEED ON STRUCTURE AND PROPERTIES OF BRONZE RODS C92900 OBTAINED BY CONTINUOUS CASTING UPWARDS

Metallurg ◽  
2021 ◽  
pp. 44-51
Author(s):  
V.E. Bazhenov ◽  
A.Yu. Titov ◽  
I.V. Shkalei ◽  
E.I. Marukovich ◽  
I.V. Plisetskaya ◽  
...  
2011 ◽  
Vol 82 (11) ◽  
pp. 1266-1272 ◽  
Author(s):  
Jian-Xun Fu ◽  
Wen-Sing Hwang ◽  
Jing-She Li ◽  
Shu-Feng Yang ◽  
Zhang Hui

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3681
Author(s):  
Guoliang Liu ◽  
Haibiao Lu ◽  
Bin Li ◽  
Chenxi Ji ◽  
Jiangshan Zhang ◽  
...  

A mathematical model coupled with electromagnetic field has been developed to simulate the transient turbulence flow and initial solidification in a slab continuous casting mold under different electromagnetic stirring (EMS) currents and casting speeds. Through comparing the magnetic flux density, flow field with measured results, the reliability of the mathematical model is proved. The uniform index of solidified shell thickness has been introduced to judge the uniformity of the solidified shell. The results show that a horizonal recirculation flow has been generated when EMS is applied, and either accelerated or decelerated regions of flow field are formed in the liquid pool. Large EMS current and low casting speed may cause the plug flow near the mold narrow face and a suitable EMS current can benefit to the uniform growth of solidified shell. Meanwhile, an industrial test exhibits that EMS can weaken the level fluctuation and number density of inclusion. Overall, a rational EMS current range is gained, when the casting speed is 1.2 m/min, the rational EMS current is 500–600 A.


2012 ◽  
Vol 535-537 ◽  
pp. 633-638 ◽  
Author(s):  
Zheng Hai Zhu ◽  
Sheng Tao Qiu

It was analyzed by strain-induced precipitation model that Nb(C,N) precipitation in micro alloy steel slab was effected by strain rate during continuous casting process. The results are as follows: The changing of casting speed could effect the time for 5%precipitation of Nb(C,N), which was decreasing with increasing casting speed at certain temperature and strain rate. Slab strain and strain rate were too small in bending zone and leveling zone. The effect of slab strain rate on Nb(C,N) precipitation could be ignore when Nb(C,N) precipitation in continuous casting process was studied.


Metallurgist ◽  
2021 ◽  
Author(s):  
V. E. Bazhenov ◽  
A. Yu. Titov ◽  
I. V. Shkalei ◽  
E. I. Marukovich ◽  
I. V. Plisetskaya ◽  
...  

2019 ◽  
Vol 55 (1) ◽  
pp. 39-46
Author(s):  
W. Kong ◽  
D.G. Cang

The submerged entry nozzle (SEN) clogging has been happening during continuous casting (or CC for short) for nonoriented silicon steel. To solve the problem, the paper studied a flow rate through SEN, a node attached to one of them, and the impact on the clogging. The results showed that when SEN is clogged seriously, the casting speed has to decrease below the target casting speed and that SEN clogging can be predicted by comparing the actual value and the theoretical one of a casting speed. Al2O3 and its composite inclusions caused the SEN clogging and the addition of Ca can solve SEN clogging during CC of the silicon steel both theoretically and practically. Furthermore, the impact of the addition of Ca on the magnetic properties of the steel were analyzed. The results showed that the core loss and the magnetic induction of the silicon steel decreased by using the addition of Ca, which generated more dissolved Aluminum, and the addition of Ca generated more harmful textures, which reduced the magnetic induction.


2011 ◽  
Vol 291-294 ◽  
pp. 3060-3063
Author(s):  
Hong Ming Wang ◽  
Bo Feng Yang ◽  
Bang Min Song ◽  
Ting Wang Zhang ◽  
Yong Qi Yan

A model on non-sinusoidal oscillation of continuous casting mould was established to study the pressure in flux channel. The effects of oscillation parameters on the pressure in flux channel were researched. The non-sinusoidal oscillation parameters were optimized. When the casting speed is 1.8 m·min-1, the optimized oscillation parameters are: non-sinusoidal factor (α) is 0.198, oscillation amplitude (s) is ±4mm and oscillation frequency (f) is 165min-1. When the casting speed is 2.0 m·min-1, the optimized oscillation parameters are: α is 0.186, s is ±4.5mm and f is 155min-1. These optimized oscillation parameters are proved applicable in practice.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1774 ◽  
Author(s):  
Yang Wang ◽  
Shufeng Yang ◽  
Feng Wang ◽  
Jingshe Li

To reduce slag entrapment in 150 × 1270 mm slab continuous casting molds at the Tang Steel Company, the effect of submerged entrance nozzle (SEN) depth and casting speed on the phenomenon was studied by computational fluid dynamics simulations. Then, the slag entrapment behavior in continuous casting molds, utilizing Large Eddy Simulation (LES) by coupling the volume of fluid (VOF) method, was also used. Finally, the effect of several common oils usually used to simulate slag in water modelling on slag entrapment was discussed and the water modelling results were used to validate the numerical simulation findings. The results showed that the optimum scheme is a submerged depth of SEN 90 mm and a casting speed of 1.6 m/min. Under optimal conditions, the maximum surface velocity is smallest (0.335 m/s) and the maximum slag entrapment ratio (0.44%) appears in the position of 0.1 m below the meniscus after 15 s. The water modelling results were in good agreement with the numerical simulation results.


2005 ◽  
Vol 486-487 ◽  
pp. 338-341
Author(s):  
Dock Young Lee ◽  
Ki Bae Kim ◽  
Do Hyang Kim

The effects of reheating in solid-liquid region on the microstructure of electromagnetically stirred Al alloy have been investigated. The billet of Al alloy was produced at a various casting speed from 200 to 500 mm/min in a continuous casting machine with an electromagnetic stirring device. The microstructure of the billet, which was isothermally reheated in a solid-liquid region during holding for from 0.5 to 15 min, was examined. The roundness and size of primary α phase of electromagnetic stirred Al alloy was measured according to the reheating time. The roundness of primary α phase was obtained a minimum during holding for from 3 to 7 min at a holding temperature of 584°C and was deteriorated at a longer reheating time due to a dominant coalescence. Also the spheroidization of primary α phase during reheating in solid-liquid region was significantly dependent on initial microstructure of the billet.


2015 ◽  
Vol 727-728 ◽  
pp. 513-516
Author(s):  
Lin Hui Yu ◽  
Ming Gang Shen ◽  
Ji Dong Li ◽  
Yi Yong Wang ◽  
Jian Ming Su ◽  
...  

Crystallizer steel belt feeding technology make use of melt’s fusion decalescence, controlling the distribution of melt temperature field, restrain the columnar crystal’s growing to eliminate the composition segregation and internal loose of continuous casting. And it will improve the continuous casting’s quality. By discussing the effect of casting speed, the size of steel, casting section and other factors on the steel belt feeding speed, making comparison of different casting section get strip suitable feeding speed and range of strip size, combining with a steel for steel strip feeding test mold, its theoretical and practical production results the basic agreement


Sign in / Sign up

Export Citation Format

Share Document