scholarly journals Advanced Segmentation Algorithms for the Three-Dimensional Analysis of X-Ray CT Data from Geomaterials

2011 ◽  
Author(s):  
Loes BRABANT ◽  
Jelle VLASSENBROECK ◽  
Tim DE KOCK ◽  
Manuel DIERICK ◽  
Veerle CNUDDE ◽  
...  
2003 ◽  
Vol 8 (1) ◽  
pp. 2-6 ◽  
Author(s):  
Wolfgang H Stuppy ◽  
Jessica A Maisano ◽  
Matthew W Colbert ◽  
Paula J Rudall ◽  
Timothy B Rowe

Author(s):  
Remi Ammann ◽  
Christine Tanner ◽  
Georg Schulz ◽  
Bekim Osmani ◽  
Prasad Nalabothu ◽  
...  

2019 ◽  
Vol 34 (2) ◽  
pp. 97-102
Author(s):  
M. A. Rodriguez ◽  
T. T. Amon ◽  
J. J. M. Griego ◽  
H. Brown-Shaklee ◽  
N. Green

Advancements in computer technology have enabled three-dimensional (3D) reconstruction, data-stitching, and manipulation of 3D data obtained on X-ray imaging systems such as micro-computed tomography (μ-CT). Likewise, intuitive evaluation of these 3D datasets can be enhanced by recent advances in virtual reality (VR) hardware and software. Additionally, the generation, viewing, and manipulation of 3D X-ray diffraction datasets, such as pole figures employed for texture analysis, can also benefit from these advanced visualization techniques. We present newly-developed protocols for porting 3D data (as TIFF-stacks) into a Unity gaming software platform so that data may be toured, manipulated, and evaluated within a more-intuitive VR environment through the use of game-like controls and 3D headsets. We demonstrate this capability by rendering μ-CT data of a polymer dogbone test bar at various stages of in situ mechanical strain. An additional experiment is presented showing 3D XRD data collected on an aluminum test block with vias. These 3D XRD data for texture analysis (χ, ϕ, 2θ dimensions) enables the viewer to visually inspect 3D pole figures and detect the presence or absence of in-plane residual macrostrain. These two examples serve to illustrate the benefits of this new methodology for multidimensional analysis.


2021 ◽  
Vol 5 (1) ◽  
pp. 27
Author(s):  
Christine Bauer ◽  
Rebecca Wagner ◽  
Beate Orberger ◽  
Markus Firsching ◽  
Christiane Wagner ◽  
...  

X-ray transmission (XRT) and computed tomography (CT) was used on five samples from the Niaz porphyry Cu–Mo deposit in Iran, representing different alteration zones. Analysis of three-dimensional CT data revealed structural information and groups of elements with low, medium and high attenuation, which were assigned to minerals previously determined by scanning electron microscopy. Thus, the mineralization can be located, and the metal/waste ratio can be estimated, leading to more precise ore body modelling and process parameter determination. CT is useful for selected samples as it is time consuming. XRT can be used as real-time process on conveyor belts.


2004 ◽  
Vol 339 (1-2) ◽  
pp. 125-130 ◽  
Author(s):  
A.C. Jones ◽  
A.P. Sheppard ◽  
R.M. Sok ◽  
C.H. Arns ◽  
A. Limaye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document