Thermodynamics of Crystallization in High Polymers. VI. Incipient Crystallization in Stretched Vulcanized Rubber

1950 ◽  
Vol 23 (3) ◽  
pp. 576-580 ◽  
Author(s):  
Thomas G. Fox ◽  
Paul J. Flory ◽  
Robert E. Marshall

Abstract Experimental determination of the elongation at which crystallization commences in vulcanized rubber has been attempted through measurement of density changes by a hydrostatic method. The critical elongation for incipient crystallization appears to depend on the temperature, in approximate accordance with theoretical prediction. Crystallization sets in at an elongation well below that at which the stress-strain curve assumes a steep slope.

1986 ◽  
Vol 18 (5) ◽  
pp. 664-668
Author(s):  
M. V. Shakhmatov ◽  
V. V. Erofeev ◽  
V. A. Lupin ◽  
A. A. Ostsemin

1938 ◽  
Vol 11 (4) ◽  
pp. 647-652 ◽  
Author(s):  
H. Hintenberger ◽  
W. Neumann

Abstract The S-shaped form of the stress-strain curve of rubber is today explained in a quite satisfactory way. In the first part of the curve, i. e., the gradual ascent, work must be expended because of the van der Waals forces of attraction of the molecules; in the second part, i. e., the steep ascent, the elasticity is chiefly an entropy effect, which is finally exceeded by crystallization phenomena. The phenomenon of crystallization itself has been the subject of extensive investigations, but in most cases vulcanized rubber has been employed, and because of the various accelerators and fillers which the rubber has contained, the products have been rather ill-defined. It is evident that the phenomena involved in crystallization would be much more clearly defined if the substance under investigation were to be in a higher state of purity. If experiments are carried out with raw rubber, a flow effect is added to the various other phenomena. As a result of this flow effect, Rosbaud and Schmidt, and Hauser and Rosbaud as well, found that the stress-strain curve depends on the rate of elongation at very low extensions, with a greater stiffness at high rates of elongation. As found recently by Kirsch, there is no evidence of any flow phenomena in vulcanized rubber at room temperature. Most investigations have been so carried out that the stress has been measured at a definite elongation. It was therefore of interest to determine the elongation at constant stress, and the changes in this relation with time and with temperature, of various types of raw rubber.


1964 ◽  
Vol 37 (4) ◽  
pp. 1034-1048 ◽  
Author(s):  
A. M. Gessler

Abstract The effect of oxidized blacks on the stress-strain properties and bound-rubber content of butyl and SBR was discussed in the preceding paper. Oxidized blacks, when compared with similar untreated blacks, were shown to have a greatly increased reinforcing capacity in butyl. Oxygen functionality on carbon black, it was therefore concluded, is essential in butyl to produce the chemical reactivity which is required between polymer and black if high-order reinforcement is to be obtained. Oxygen functionality on carbon black, it was also demonstrated, is not only not required for enhanced reinforcement in SBR, but it is in fact a deterrent, because it exerts severe restraining effects on the cure of the resulting vulcanizates as well. These interesting results were proposed to provide qualitative but convincing evidence that carbon-polymer bonding, which we believe is requisite to reinforcement, is achieved by different mechanisms in butyl and SBR. In butyl, the unique sensitivity of the stress-strain curve to reinforcing effects was used to speculate on the disposition of carbon blacks in “filled” and reinforced vulcanizates, respectively. With oxidized blacks, reinforcement effects were pictured as stiffening effects which, starting with the gum vulcanizates, caused the stress-strain curve to be shifted without intrinsic changes in its shape. The resulting “reinforced gum,” it was suggested, derived its physical characteristics from the fact that carbon black was included in the vulcanized rubber network. With untreated blacks, in “filled” systems, carbon black was pictured as being enmeshed or entangled in an independently formed vulcanized rubber network. The stiffening effects in this case were attributed to viscous contributions arising from steric restrictions which the occluded carbon particles were thought to impose on both initial movements and the subsequent orientation of network chains when the sample was extended.


2004 ◽  
Vol 841 ◽  
Author(s):  
Karsten Durst ◽  
Björn Backes ◽  
Mathias Göken

ABSTRACTThe determination of plastic properties of metallic materials by nanoindentation requires the analysis of the indentation process and the evaluation methods. Particular effects on the nanoscale, like the indentation size effect or piling up of the material around the indentation, need to be considered. Nanoindentation experiments were performed on conventional grain sized (CG) as well as on ultrafine-grained (UFG) copper and brass. The indentation experiments were complemented with finite element simulations using the monotonic stress-strain curve as input data. All indentation tests were carried out using cube-corner and Berkovich geometry and thus different amount of plastic strain was applied to the material, according to Tabors theory. We find an excellent agreement between simulations and experiments for the UFG materials from which a representative strain of εB ≈ 0.1 and εcc ≈ 0.2 is determined. With these data, the slope of the stress-strain curve is predicted for all materials down to an indentation depth of 800 nm.


Sign in / Sign up

Export Citation Format

Share Document