scholarly journals BUTADIENE RUBBER: SYNTHESIS, MICROSTRUCTURE, AND ROLE OF CATALYSTS

Author(s):  
Amit Kumar ◽  
Subhra Mohanty ◽  
Virendra Kumar Gupta

ABSTRACT Butadiene rubber (BR) is one of the most useful and second most produced rubber worldwide. Polymerization of 1,3-butadiene (BD) is a highly stereospecific reaction that offers a wide variety of BR with different microstructures and influences the fundamental properties of the rubber. Since the first successful polymerization of conjugated diene using the Ziegler–Natta–based catalyst (TiCl4 or TiCl3 with aluminum alkyls) in 1954, the research on producing synthetic rubber with an appropriate catalyst system has been accelerated. Subsequently, various research groups are actively engaged in designing active catalyst systems based on a suitable combination of transition metal complexes with alkyl-aluminum and successfully using them in BD polymerization. Although various scientific inventions have proven their significance for the production of high-quality BR, with the rising demands in improving the quality of the product, research on developing new catalyst systems with enhanced catalytic activity and high stereoselectivity is still in progress. The present review focuses on the synthesis of BR using various transition metal catalysts and discusses their microstructures. The catalysts based on new-generation metal complexes with phosphorus, nitrogen, and oxygen donor ligands (e.g., phosphines, imines, 1,10-phenanthroline, and imino-pyridines) have been introduced. The role that catalysts play in the production of BR with different microstructures (i.e., high-cis, high-trans or low-cis, low-trans polybutadiene) has also been described. The combination of catalyst (transition metal complex) and suitable co-catalyst (alkyl-aluminum) is the major factor influencing the reaction and microstructure of the resulting polymer. This report focuses on the effect of transition metal catalysts (i.e., lithium [Li], titanium [Ti], zirconium [Zr], iron [Fe], cobalt [Co], nickel [Ni], and neodymium [Nd]) on the activity and stereoselectivity of polymers such as 1,4-cis-, 1,4-trans-, and 1,2-vinyl-polybutadiene.

1997 ◽  
Vol 70 (3) ◽  
pp. 519-529 ◽  
Author(s):  
J. C. Marmo ◽  
K. B. Wagener

Abstract The employment of transition metal catalysts has been a viable route in the degradation and depolymerization of unsaturated polymers. Initially, unsaturated polymers were degraded with a catalytic system containing a transition metal and a Lewis acid cocatalyst (WCl6/SnBu4). Degradation chemistry was effective in reducing the molecular weight of the polymer, however, the classical catalyst system induces side reactions which generates ill-defined products. These side reactions were obviated by using a preformed alkylidene without a Lewis acid cocatalyst, and perfectly difunctional telechelics were synthesized.


2021 ◽  
Author(s):  
Anurag Mishra ◽  
Harshad R. Patil ◽  
VirendraKumar Kumar Gupta

The transition metal catalysts have evolved dynamically in last few years for propylene polymerization and copolymerization in homogeneous media. The trends in catalyst development have moved from modification of Group...


2013 ◽  
Vol 9 ◽  
pp. 1141-1147 ◽  
Author(s):  
Yohsuke Kobiki ◽  
Shin-ichi Kawaguchi ◽  
Takashi Ohe ◽  
Akiya Ogawa

A novel method of photoinduced synthesis of unsymmetrical diaryl selenides from triarylbismuthines and diaryl diselenides has been developed. Although the arylation reactions with triarylbismuthines are usually catalyzed by transition-metal complexes, the present arylation of diaryl diselenides with triarylbismuthines proceeds upon photoirradiation in the absence of transition-metal catalysts. A variety of unsymmetrical diaryl selenides can be conveniently prepared by using this arylation method.


Synlett ◽  
2021 ◽  
Author(s):  
Pingfan Li

AbstractThis Account discusses several new reaction methods developed in our group that utilize sulfur-mediated reactions through sulfonium salts and ylides, highlighting the interplay of rational design and serendipity. Our initial goal was to convert aliphatic C–H bonds into C–C bonds site-selectively, and without the use of transition-metal catalysts. While a proof-of-concept has been achieved, this target is far from being ideally realized. The unexpected discovery of an anti-Markovnikov rearrangement and subsequent studies on difunctionalization of alkynes were much more straightforward, and eventually led to the new possibility of asymmetric N–H insertion of sulfonium ylides through Brønsted acid catalysis.1 Introduction2 Allylic/Propargylic C–H Functionalization3 Anti-Markovnikov Rearrangement4 Difunctionalization of Alkynes5 Asymmetric N–H Insertion of Sulfonium Ylides6 Conclusion


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 452
Author(s):  
Michalis Konsolakis ◽  
Maria Lykaki

The rational design and fabrication of highly-active and cost-efficient catalytic materials constitutes the main research pillar in catalysis field. In this context, the fine-tuning of size and shape at the nanometer scale can exert an intense impact not only on the inherent reactivity of catalyst’s counterparts but also on their interfacial interactions; it can also opening up new horizons for the development of highly active and robust materials. The present critical review, focusing mainly on our recent advances on the topic, aims to highlight the pivotal role of shape engineering in catalysis, exemplified by noble metal-free, CeO2-based transition metal catalysts (TMs/CeO2). The underlying mechanism of facet-dependent reactivity is initially discussed. The main implications of ceria nanoparticles’ shape engineering (rods, cubes, and polyhedra) in catalysis are next discussed, on the ground of some of the most pertinent heterogeneous reactions, such as CO2 hydrogenation, CO oxidation, and N2O decomposition. It is clearly revealed that shape functionalization can remarkably affect the intrinsic features and in turn the reactivity of ceria nanoparticles. More importantly, by combining ceria nanoparticles (CeO2 NPs) of specific architecture with various transition metals (e.g., Cu, Fe, Co, and Ni) remarkably active multifunctional composites can be obtained due mainly to the synergistic metalceria interactions. From the practical point of view, novel catalyst formulations with similar or even superior reactivity to that of noble metals can be obtained by co-adjusting the shape and composition of mixed oxides, such as Cu/ceria nanorods for CO oxidation and Ni/ceria nanorods for CO2 hydrogenation. The conclusions derived could provide the design principles of earth-abundant metal oxide catalysts for various real-life environmental and energy applications.


Sign in / Sign up

Export Citation Format

Share Document