scholarly journals Frequency of blaCTX-M and blaTEM Virulence Genes and Antibiotic Resistance Profiles among Klebsiella pneumoniae Isolates in Urinary Tract Infection (UTI) Samples from Hashtgerd, Iran

2021 ◽  
Vol 10 (3) ◽  
pp. 412-419
Author(s):  
Shirin Sarshar ◽  
Reza Mirnejad ◽  
Ebrahim Babapour ◽  
◽  
◽  
...  
1970 ◽  
Vol 24 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Taslima Taher Lina ◽  
Sabita Rezwana Rahman ◽  
Donald James Gomes

Antibiotic resistance in urinary tract infection (UTI) is a growing public health problem in the world. In this study, a total of 182 uropathogens were isolated from patients with symptoms of urinary tract infection (UTI). Escherichia coli (88%) was the most prevalent isolate, while Klebsiella pneumoniae was recovered from 12% cases. The male/female ratio was 1:3. About 56% female and 51% male patients belonged to the age group >40 years. The antibiotic resistance rates of the isolates to fifteen different drugs were investigated. E. coli and K. pneumoniae showed variable pattern of susceptibility. The percentage of resistance to different drugs was higher in E. coli isolates compared to that of K. pneumoniae. Among the total number of isolates about 87% were resistant to at least three commonly used antibiotics. All the isolates were sensitive to imipenem. Analysis of the plasmid DNA had shown that the plasmid pattern was very diverse in both E. coli and K. pneumoniae. All the isolates contained multiple numbers of plasmid ranging from 1.0 to >140 MDa. Middleranged plasmids (30 to 80 MDa), the transferable resistance plasmids, were found to be present in 86% E. coli and 85% K. pneumoniae isolates. The strong association observed between plasmid profiles and drug resistance patterns suggest that plasmids other than the common plasmids may have epidemiological significance. The presence of class 1 and class 2 integrons were also investigated. A relatively high occurrence of class 1 integrons, that are associated with lateral transfer of antibacterial resistance genes, was observed in K. pneumoniae (88%) than in E. coli isolates (54%). Class 2 integrons were not found in any of the E. coli and K. pneumoniae isolates. These results show the high rate of drug resistance and the presence of high rate of transferable elements in these MDR isolates. Keywords: Uropathogens, Escherichia coli, Klebsiella pneumoniae, Multidrug-resistant (MDR) bacteria, Plasmid profiles, IntegronsDOI: http://dx.doi.org/10.3329/bjm.v24i1.1231 Bangladesh J Microbiol, Volume 24, Number 1, June 2007, pp 19-23


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11726
Author(s):  
Verónica I. Martínez-Santos ◽  
María Ruíz-Rosas ◽  
Arturo Ramirez- Peralta ◽  
Oscar Zaragoza García ◽  
Luis Armando Resendiz-Reyes ◽  
...  

Background Uropathogenic Escherichia coli (UPEC) is the causative agent of uncomplicated urinary tract infections (UTIs) in ambulatory patients. However, enteroaggregative E. coli (EAEC), an emergent bacterial pathogen that causes persistent diarrhoea, has recently been associated with UTIs. The aim of this study was to determine the frequency of EAEC virulence genes, antibiotic resistance, as well as biofilm production of UPEC isolates obtained from ambulatory patients with non-complicated UTIs that attended to the ISSSTE clinic in Chilpancingo, Guerrero, Mexico, and correlate these with the patients’ urinary tract infection symptomatology. Methods One hundred clinical isolates were obtained. The identification of clinical isolates, antimicrobial susceptibility testing, and extended spectrum beta-lactamases (ESBLs) production were performed using the Vitek automated system. Assignment of E. coli phylogenetic groups was performed using the quadruplex phylo-group assignment PCR assay. UPEC virulence genes (hlyA, fimH, papC, iutA, and cnf1) and EAEC virulence genes (aap, aggR, and aatA) were detected by multiple PCR. Results We found that 22% of the isolates carried the aggR gene and were classified as UPEC/EAEC. The main phylogenetic group was B2 (44.1% were UPEC and 77.27% UPEC/EAEC isolates, respectively). Over half of the UPEC/EAEC isolates (63.64%) were obtained from symptomatic patients, however the aatA gene was the only one found to be associated with the risk of developing pyelonephritis (OR = 5.15, p = 0.038). A total of 77.71% of the UPEC/EAEC isolates were ESBL producers and 90.91% multidrug-resistant (MDR). In conclusion, UPEC/EAEC isolates are more frequent in symptomatic patients and the aatA gene was associated with a higher risk of developing pyelonephritis, along with UPEC genes hlyA and cfn1. UPEC/EAEC isolates obtained from UTI showed ESBL production and MDR.


2020 ◽  
Vol 7 (4) ◽  
Author(s):  
Manijeh Dehnamaki ◽  
Maryam Ghane ◽  
Laleh Babaeekhou

Background: The emergence and spread of drug resistance among Klebsiella pneumoniae clinical isolates have limited the treatment options for these bacteria. Efflux pumps are considered as one of the key mechanisms of antibiotic resistance in K. pneumoniae isolates. Objectives: The present study aimed to detect oqxA, oqxB, and qepA efflux genes in K. pneumoniae isolated from urinary tract infection (UTI) and survey their association with antibiotic resistance. Methods: In total, 100 K. pneumoniae isolates were obtained from urine samples, and an antimicrobial susceptibility test was conducted using the disk diffusion method according to the Clinical and Laboratory Standards Institute (CLSI) instructions. Polymerase chain reaction (PCR) was done for the detection of efflux pump genes including, oqxA, oqxB, and qepA, and their association was statistically analyzed with resistance to antibiotics. Results: The highest rate of resistance was obtained against trimethoprim-sulfamethoxazole (72%), amikacin (70%), levofloxacin (68%), gentamicin (56%), ceftazidime (56%), and ceftriaxone (51%), and the lowest resistance was against imipenem (10%). Thirty one percent of isolates were multidrug resistant (MDR). Molecular distribution test showed that 57% and 56% of isolates carried the oqxA and oqxB genes, respectively. Also, the frequency of qepA genes was 21%. The presence of oqxA/oqxB and qepA efflux genes were significantly associated with fluoroquinolone and beta-lactam resistance phenotypes (P < 0.05). Conclusions: The high frequency of efflux genes showed that this resistance mechanism is the main way, along with other resistance mechanisms in K. pneumoniae isolates. It is necessary to adopt appropriate treatment to reduce the incidence of resistance.


Author(s):  
Alessandra Tammy Hayakawa Ito de Sousa ◽  
Marco Túlio dos Santos Costa ◽  
Herica Makino ◽  
Stéfhano Luis Cândido ◽  
Isabela de Godoy Menezes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document