scholarly journals Effect of Eight Weeks of Exercise with Different Intensities on the Gene Expression of Decorin and Muscular TGF-β in the Male Adult Rats

2021 ◽  
Vol 29 (2) ◽  
pp. 86-94
Author(s):  
Elham Vosadi ◽  
Farhad Gholami ◽  
Elham Mortazavi ◽  
◽  
◽  
...  
2019 ◽  
Vol 7 (4) ◽  
pp. 30-39
Author(s):  
Mohammad Mousaei ◽  
Mohammad Ali Azarbayjani ◽  
Maghsoud Peeri ◽  
Seyed Ali Hosseini ◽  
◽  
...  

2021 ◽  
Vol 219 ◽  
pp. 112323
Author(s):  
Xiang Zhou ◽  
Tongtong Zhang ◽  
Lebin Song ◽  
Yichun Wang ◽  
Qijie Zhang ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hui Li ◽  
Jing-An Chen ◽  
Qian-Zhi Ding ◽  
Guan-Yi Lu ◽  
Ning Wu ◽  
...  

Abstract Background Methamphetamine (METH) is one of the most widely abused illicit substances worldwide; unfortunately, its addiction mechanism remains unclear. Based on accumulating evidence, changes in gene expression and chromatin modifications might be related to the persistent effects of METH on the brain. In the present study, we took advantage of METH-induced behavioral sensitization as an animal model that reflects some aspects of drug addiction and examined the changes in gene expression and histone acetylation in the prefrontal cortex (PFC) of adult rats. Methods We conducted mRNA microarray and chromatin immunoprecipitation (ChIP) coupled to DNA microarray (ChIP-chip) analyses to screen and identify changes in transcript levels and histone acetylation patterns. Functional enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, were performed to analyze the differentially expressed genes. We then further identified alterations in ANP32A (acidic leucine-rich nuclear phosphoprotein-32A) and POU3F2 (POU domain, class 3, transcription factor 2) using qPCR and ChIP-PCR assays. Results In the rat model of METH-induced behavioral sensitization, METH challenge caused 275 differentially expressed genes and a number of hyperacetylated genes (821 genes with H3 acetylation and 10 genes with H4 acetylation). Based on mRNA microarray and GO and KEGG enrichment analyses, 24 genes may be involved in METH-induced behavioral sensitization, and 7 genes were confirmed using qPCR. We further examined the alterations in the levels of the ANP32A and POU3F2 transcripts and histone acetylation at different periods of METH-induced behavioral sensitization. H4 hyperacetylation contributed to the increased levels of ANP32A mRNA and H3/H4 hyperacetylation contributed to the increased levels of POU3F2 mRNA induced by METH challenge-induced behavioral sensitization, but not by acute METH exposure. Conclusions The present results revealed alterations in transcription and histone acetylation in the rat PFC by METH exposure and provided evidence that modifications of histone acetylation contributed to the alterations in gene expression caused by METH-induced behavioral sensitization.


2016 ◽  
Vol 106 ◽  
pp. 46-55 ◽  
Author(s):  
Bassem Sadek ◽  
Ali Saad ◽  
Dhanasekaran Subramanian ◽  
Mohamed Shafiullah ◽  
Dorota Łażewska ◽  
...  

2019 ◽  
Vol 199 ◽  
pp. 118-126 ◽  
Author(s):  
Hiromi Tanaka ◽  
Ayuka Ehara ◽  
Kazuhiko Nakadate ◽  
Kanji Yoshimoto ◽  
Kazutaka Shimoda ◽  
...  
Keyword(s):  

1999 ◽  
Vol 277 (3) ◽  
pp. H1036-H1044 ◽  
Author(s):  
Shaolong Yang ◽  
Mian Zhou ◽  
Douglas J. Koo ◽  
Irshad H. Chaudry ◽  
Ping Wang

The cardiovascular response to sepsis includes an early, hyperdynamic phase followed by a late, hypodynamic phase. Although administration of pentoxifylline (PTX) produces beneficial effects in sepsis, it remains unknown whether this agent prevents the transition from the hyperdynamic to the hypodynamic response during the progression of sepsis. To study this, male adult rats were subjected to polymicrobial sepsis by cecal ligation and puncture (CLP). At 1 h after CLP, PTX (50 mg/kg body wt) or vehicle was infused intravenously over 30 min. At 20 h after CLP (i.e., the late stage of sepsis), cardiac output and organ blood flow were measured by radioactive microspheres. Systemic and regional (i.e., hepatic, intestinal, and renal) oxygen delivery (Do 2) and oxygen consumption (V˙o 2) were determined. Moreover, plasma levels of lactate and alanine aminotransferase (ALT) were measured, and histological examinations were performed. In additional animals, the necrotic cecum was excised at 20 h after CLP, and mortality was monitored for 10 days thereafter. The results indicate that cardiac output, organ blood flow, and systemic and regional Do 2decreased by 36–65% ( P < 0.05) at 20 h after CLP. Administration of PTX early after the onset of sepsis, however, prevented reduction in measured hemodynamic parameters and increased systemic and regional Do 2 andV˙o 2 by 50–264% ( P < 0.05). The elevated levels of lactate (by 173%, P < 0.05) and ALT (by 718%, P < 0.05), as well as the morphological alterations in the liver, small intestine, and kidneys during sepsis were attenuated by PTX treatment. In addition, PTX treatment decreased the mortality rate from 50 to 0% ( P < 0.05) after CLP and cecal excision. Because PTX prevents the occurrence of hypodynamic sepsis, this agent appears to be a useful adjunct for maintaining hemodynamic stability and preventing lethality from sepsis.


2019 ◽  
Vol 55 ◽  
pp. 17-27 ◽  
Author(s):  
Fernanda Torres Quitete ◽  
Egberto Gaspar de Moura ◽  
Geórgia Correa Atella ◽  
Patricia Cristina Lisboa ◽  
Elaine de Oliveira

1989 ◽  
Vol 67 (1) ◽  
pp. 210-220 ◽  
Author(s):  
P. S. Massarelli ◽  
H. J. Green ◽  
R. L. Hughson ◽  
M. T. Sharratt

To investigate the hypothesis that the rate of fatigue development is not influenced by the absolute duration of contraction (train duration) and relaxation (off-phase of duty cycle) at constant duty cycle, strips of the diaphragm from 36 male adult rats (mean +/- SD wt 152 +/- 21 g) were stimulated directly for periods of 180, 250, and 320 ms at a constant duty cycle of 50%. The frequency of stimulation was adjusted to produce 40% of maximal tetanic tension at supramaximal voltages. After 30 min of stimulation, analysis of twitch characteristics between control and experimental groups indicated a prolongation of contraction time of 9% (P less than 0.05), an increase in relaxation time of 75% (P less than 0.05), and a decrease in twitch tension by 78% (P less than 0.05). Similarly, reductions (P less than 0.05) in isometric force output at high stimulation frequency (100 Hz) of 58% and at low frequency (20 Hz) of 67% were also noted. These changes were accompanied by an approximately 60% reduction in the maximal velocity of shortening. No difference was observed for any of the mechanical measures between experimental conditions. After 30-min stimulation, decreases of between 43 and 46% were noted for ATP (P less than 0.05) and increases of between three- and fourfold noted for IMP (P less than 0.05). No changes were found for either ADP or AMP. Total adenine nucleotide concentrations declined (P less than 0.05) an average of 24%. As with the mechanical data, no differences were found between the different stimulation conditions. It is concluded that for the conditions studied, fatigue mechanisms become manifest early in the stimulation period and are only minimally altered by the duration of specific contractions provided the relaxation period is of equal duration.


2020 ◽  
Vol 83 (15-16) ◽  
pp. 559-572 ◽  
Author(s):  
Mariana Gazoli Barbosa ◽  
Bárbara Campos Jorge ◽  
Julia Stein ◽  
Dayana Agnes Santos Ferreira ◽  
Ana Carolina da Silva Barreto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document