scholarly journals The Normal Anatomy of the Brain Pathways: What the Neuroradiologist Needs to Know (Literature Review)

2021 ◽  
pp. 95-115
Author(s):  
A. S. Filatov ◽  
E. I. Kremneva ◽  
M. S. Matrosova ◽  
V. V. Trubitsyna ◽  
L. A. Dobrynina ◽  
...  

Diffusion-tensor magnetic resonance imaging (DT-MRI) allows imaging of most brain pathways, quantifying their integrity and even suggesting a leading mechanism of damage (demyelination or ischemia). However, it is difficult to use this technique without a good knowledge of the anatomy. This article provides an overview of the literature on the structure and function of the main brain pathways.

Hypertension ◽  
2020 ◽  
Vol 76 (5) ◽  
pp. 1480-1490 ◽  
Author(s):  
Lorenzo Carnevale ◽  
Angelo Maffei ◽  
Alessandro Landolfi ◽  
Giovanni Grillea ◽  
Daniela Carnevale ◽  
...  

Hypertension is one of the main risk factors for vascular dementia and Alzheimer disease. To predict the onset of these diseases, it is necessary to develop tools to detect the early effects of vascular risk factors on the brain. Resting-state functional magnetic resonance imaging can investigate how the brain modulates its resting activity and analyze how hypertension impacts cerebral function. Here, we used resting-state functional magnetic resonance imaging to explore brain functional-hemodynamic coupling across different regions and their connectivity in patients with hypertension, as compared to subjects with normotension. In addition, we leveraged multimodal imaging to identify the signature of hypertension injury on the brain. Our study included 37 subjects (18 normotensives and 19 hypertensives), characterized by microstructural integrity by diffusion tensor imaging and cognitive profile, who were subjected to resting-state functional magnetic resonance imaging analysis. We mapped brain functional connectivity networks and evaluated the connectivity differences among regions, identifying the altered connections in patients with hypertension compared with subjects with normotension in the (1) dorsal attention network and sensorimotor network; (2) dorsal attention network and visual network; (3) dorsal attention network and frontoparietal network. Then we tested how diffusion tensor imaging fractional anisotropy of superior longitudinal fasciculus correlates with the connections between dorsal attention network and default mode network and Montreal Cognitive Assessment scores with a widespread network of functional connections. Finally, based on our correlation analysis, we applied a feature selection to highlight those most relevant to describing brain injury in patients with hypertension. Our multimodal imaging data showed that hypertensive brains present a network of functional connectivity alterations that correlate with cognitive dysfunction and microstructural integrity. Registration— URL: https://www.clinicaltrials.gov ; Unique identifier: NCT02310217.


2019 ◽  
Vol 46 (1) ◽  
pp. 202-210 ◽  
Author(s):  
Dusan Hirjak ◽  
Mahmoud Rashidi ◽  
Katharina M Kubera ◽  
Georg Northoff ◽  
Stefan Fritze ◽  
...  

Abstract Catatonia is a nosologically unspecific syndrome, which subsumes a plethora of mostly complex affective, motor, and behavioral phenomena. Although catatonia frequently occurs in schizophrenia spectrum disorders (SSD), specific patterns of abnormal brain structure and function underlying catatonia are unclear at present. Here, we used a multivariate data fusion technique for multimodal magnetic resonance imaging (MRI) data to investigate patterns of aberrant intrinsic neural activity (INA) and gray matter volume (GMV) in SSD patients with and without catatonia. Resting-state functional MRI and structural MRI data were collected from 87 right-handed SSD patients. Catatonic symptoms were examined on the Northoff Catatonia Rating Scale (NCRS). A multivariate analysis approach was used to examine co-altered patterns of INA and GMV. Following a categorical approach, we found predominantly frontothalamic and corticostriatal abnormalities in SSD patients with catatonia (NCRS total score ≥ 3; n = 24) when compared to SSD patients without catatonia (NCRS total score = 0; n = 22) matched for age, gender, education, and medication. Corticostriatal network was associated with NCRS affective scores. Following a dimensional approach, 33 SSD patients with catatonia according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision were identified. NCRS behavioral scores were associated with a joint structural and functional system that predominantly included cerebellar and prefrontal/cortical motor regions. NCRS affective scores were associated with frontoparietal INA. This study provides novel neuromechanistic insights into catatonia in SSD suggesting co-altered structure/function-interactions in neural systems subserving coordinated visuospatial functions and motor behavior.


2021 ◽  
Vol 21 (2) ◽  
pp. 79-82
Author(s):  
Neda Bernasconi ◽  
Irene Wang

Neuroimaging techniques, particularly magnetic resonance imaging, yield increasingly sophisticated markers of brain structure and function. Combined with ongoing developments in machine learning, these methods refine our abilities to detect subtle epileptogenic lesions and develop reliable prognostics.


Sign in / Sign up

Export Citation Format

Share Document