A Density Functional Theory Study of 3,5-dichlorosalicyliden-p-iminoacetophenone oxime Complexes with Co, Ni, Cu and Zn Metals

2019 ◽  
Vol 41 (5) ◽  
pp. 770-770
Author(s):  
Ali apan Ali apan ◽  
Erdal Canpolat Erdal Canpolat ◽  
Henar Sleman and Niyazi Bulut Henar Sleman and Niyazi Bulut

In this work, new Schiff baz ligand was synthesized by reaction of p-iminoacetophenone oxime with 3,5-dichlorosalicylaldehyde. Metal complexes of Co+2, Ni+2, Cu+2 and Zn+2 acetate metal salts were synthesized with this ligand. The ligand and complexes are characterized in experimental by their elemental analyses, X-ray, 1H-NMR, 13C-NMR, UV-Vis, FT-IR, magnetic susceptibility and thermogravimetric analyses (TGA) and also have been investigated by using quantum mechanical methods. The transition metals are coordinated to the schiff base through the azomethine nitrogen and the carboxyl oxygen atom. Obtained metal complexes were studied the magnetic properties and their geometries were determined. Co+2, Ni+2 and Zn+2 complexes have been found tetrahedral geometry and Cu+2 complex has been found four coordinated geometry.

Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 267 ◽  
Author(s):  
Reza Kia ◽  
Azadeh Kalaghchi

The synthesis, characterization, structural and computational studies of Re(I) tricarbonyl bromo complexes bearing alkyl-substituted 1,4-diazabutadiene ligands, [Re(CO)3(1,4-DAB)Br], where 1,4-DAB = N,N-bis(2,4-dimethylbenzene)-1,4-diazabutadiene, 2,4-Me2DAB (1); N,N-bis(2,4-dimethylbenzene)-2,3-dimethyl-1,4-diazabutadiene, 2,4-Me2DABMe (2); N,N-bis(2,4,6-trimethylbenzene)-1,4-diazabutadiene, 2,4,6-Me3DAB (3); and N,N-bis(2,6-diisopropylbenzene)-1,4-diazabutadiene, 2,6-ipr2DAB (4) are reported. The complexes were characterized by different spectroscopic methods such as FT-IR, 1H-NMR, 13C-NMR, and elemental analyses and their solid-state structures were confirmed by X-ray diffraction. In each complex, the Re(I) centre shows a distorted octahedral shape with a facial geometry of carbonyl groups. The gas phase geometry of the complexes was identified by density functional theory. Interesting intermolecular n…π* interactions of complexes 1 and 3 were investigated by non-covalent interaction index (NCI), and natural bond orbital (NBO) analyses. The intramolecular n…σ*, σ…π*, π…σ* interactions were also studied in complexes 3 and 4.


2020 ◽  
Vol 75 (3) ◽  
pp. 287-293
Author(s):  
Samireh Hosseini ◽  
Zahra Mardani ◽  
Keyvan Moeini ◽  
Cameron Carpenter-Warren ◽  
Alexandra M.Z. Slawin ◽  
...  

AbstractIn this work, a pyrimidine-based ligand, N′-(amino(pyrimidin-2-yl)methylene)pyrimidine-2-carbohydrazonamide hydrate (APPH · H2O), and its binuclear complex of cadmium, [Cd(μ-APPH)Br]2, 1, were prepared and identified by elemental analysis, FT-IR, 1H NMR spectroscopy as well as single-crystal X-ray diffraction. X-ray structure analysis of 1 revealed octahedrally coordinated cadmium centers with a CdN4Br2 environment containing two bridging APPH ligands; each APPH ligand acts as an N4-donor (N2-donor toward each cadmium atom) and forms two five-membered chelate rings that are approximately perpendicular to each other. In the network of 1, the N–H · · · Br hydrogen bonds form motifs such as ${\rm{R}}_{\rm{2}}^{\rm{2}}(12,{\rm{ }}14),{\rm{ R}}_{\rm{6}}^{\rm{6}}(24,{\rm{ }}26,{\rm{ }} \ldots ,{\rm{ }}46).$ The crystal network is further stabilized by π-π stacking interactions between pyrimidine rings. The optimized structures of the ligand and complex were investigated along with their charge distribution patterns by density functional theory and natural bond orbital analysis, respectively.


2018 ◽  
Vol 16 (1) ◽  
pp. 745-756
Author(s):  
Richard Betz

AbstractThe molecular and crystal structure of commercially-availableortho-(trifluoromethyl)phenol were determined by means of single-crystal X-ray diffractometry (XRD) and represent the first structural characterization of anortho-substituted (trihalomethyl) phenol. The unexpected presence of a defined hydrate in the solid state was observed.Intermolecular contacts and hydrogen bonding were analyzed. The compound was further characterized by means of multi-nuclear nuclear magnetic resonance (NMR) spectroscopy (1H,13C{1H},19F) and Fourier-Transform infrared (FT-IR) vibrational spectroscopy. To assess the bonding situation as well as potential reaction sites for reactions with nucleophiles and electrophiles in the compound by means of natural bonding orbital (NBO) analyses, and density functional theory (DFT) calculations were performed for the title compound as well as its homologous chlorine, bromine and iodine compounds. As far as possible, experimental data were correlated to DFT data.


2017 ◽  
Vol 72 (8) ◽  
pp. 627-630 ◽  
Author(s):  
Muhammad Akhtar ◽  
Wiktor Zierkiewicz ◽  
Mariusz Michalczyk ◽  
Tobias Rüffer ◽  
Heinrich Lang ◽  
...  

AbstractA zinc(II) complex of cis-1,2-diaminocyclohexane (Dach), [Zn(Dach)2][ZnCl4] (1), was prepared and its structure was determined by X-ray crystallography. Theoretical (density functional theory) studies were performed for the two model compounds, [Zn(Dach)2][ZnCl4] (1) and {[Zn(Dach)2][ZnCl4]}3 (13). The structure of complex 1 is composed of [Zn(Dach)2]2+ cations and [ZnCl4]2− anions. The Zn1 atom in the cationic complex adopts a severely distorted tetrahedral geometry, while in the anionic part, Zn2 displays only a slight distortion from tetrahedral coordination. The adjacent cations and anions are associated with each other through hydrogen bonding interactions to form a two-dimensional network in the solid state.


2016 ◽  
Vol 35 (2) ◽  
pp. 169
Author(s):  
Ufuk Çoruh ◽  
Reşat Ustabaş ◽  
Hakkı Türker Akçay ◽  
Emra Menteşe ◽  
Ezequiel M. Vazquez Lopez

In this study, 4-[(4-methyl-5-phenyl-4<em>H</em>-1,2,4-triazol-3-yl)sulfanyl]benzene-1,2-dicarbonitrile was synthesized and its molecular structure was characterized by means of FT-IR and X-ray diffraction methods. The crystal is monoclinic and belongs to the P21/n space group. There are three weak intermolecular C-H…N type hydrogen bonds in the molecular structure. The geometrical parameters, vibration frequencies, HOMO–LUMO energies, and molecular electrostatic potential (MEP) map of the compound (3) in ground state were calculated by using density functional theory (DFT/B3LYP) with the 6-311G(d) basis set. Calculated geometrical parameters were compared with X-ray diffraction geometric parameters. On the other hand, theoretical and experimental FT-IR results were also compared.


2019 ◽  
Vol 75 (6) ◽  
pp. 750-757
Author(s):  
Mohammad Hakimi ◽  
Fereshteh Sadeghi ◽  
Nourollah Feizi ◽  
Keyvan Moeini ◽  
Monika Kučeráková ◽  
...  

Two new N-oxide compounds, namely glycinium 2-carboxy-1-(λ1-oxidaneyl)-1λ4-pyridine-6-carboxylate–glycine–water (1/1/1), C2H6NO2 +·C7H4NO5 −·C2H5NO2·H2O or [(2,6-HpydcO)(HGLY)(GLY)(H2O)], 1, and methyl 6-carboxy-1-(λ1-oxidaneyl)-1λ4-pyridine-2-carboxylate, C8H7NO5 or 2,6-HMepydcO, 2, were prepared and identified by elemental analysis, FT–IR, Raman spectroscopy and single-crystal X-ray diffraction. The X-ray analysis of 1 revealed an ionic compound containing a 2,6-HpydcO− anion, a glycinium cation, a neutral glycine molecule and a water molecule. Compound 2 is a neutral compound with two independent units in its crystal structure. In addition to the hydrogen bonds, the crystal network is stabilized by π–π stacking interactions of the types pyridine–carboxylate and carboxylate–carboxylate. The thermodynamic stability and charge-distribution patterns for isolated molecules of 2,6-H2pydcO and 2,6-HMepydcO, and their two similar derivatives, pyridine-2,6-dicarboxylic acid (2,6-H2pydc) and dimethyl 1-(λ1-oxidaneyl)-1λ4-pyridine-2,6-dicarboxylate (2,6-Me2pydcO), were studied by density functional theory (DFT) and natural bond orbital (NBO) analysis, respectively. The ability of these compounds and their analogues to interact with nine selected biomacromolecules (BRAF kinase, CatB, DNA gyrase, HDAC7, rHA, RNR, TrxR, TS and Top II) was investigated using docking calculations.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 304 ◽  
Author(s):  
Jeannette Carolina Belmont-Sánchez ◽  
Noelia Ruiz-González ◽  
Antonio Frontera ◽  
Antonio Matilla-Hernández ◽  
Alfonso Castiñeiras ◽  
...  

The proton transfer between equimolar amounts of [Cd(H2EDTA)(H2O)] and 2,6-diaminopurine (Hdap) yielded crystals of the out-of-sphere metal complex H2(N3,N7)dap[Cd(HEDTA)(H2O)]·H2O (1) that was studied by single-crystal X-ray diffraction, thermogravimetry, FT-IR spectroscopy, density functional theory (DFT) and quantum theory of “atoms-in-molecules” (QTAIM) methods. The crystal was mainly dominated by H-bonds, favored by the observed tautomer of the 2,6-diaminopurinium(1+) cation. Each chelate anion was H-bonded to three neighboring cations; two of them were also connected by a symmetry-related anti-parallel π,π-staking interaction. Our results are in clear contrast with that previously reported for H2(N1,N9)ade [Cu(HEDTA)(H2O)]·2H2O (EGOWIG in Cambridge Structural Database (CSD), Hade = adenine), in which H-bonds and π,π-stacking played relevant roles in the anion–cation interaction and the recognition between two pairs of ions, respectively. Factors contributing in such remarkable differences are discussed on the basis of the additional presence of the exocyclic 2-amino group in 2,6-diaminopurinium(1+) ion.


Sign in / Sign up

Export Citation Format

Share Document