Invasive woody plants as foci of tick-borne pathogens: eastern redcedar in the southern Great Plains

2021 ◽  
Vol 46 (1) ◽  
Author(s):  
Bruce H. Noden ◽  
Evan P. Tanner ◽  
John A. Polo ◽  
Sam D. Fuhlendorf
Biologia ◽  
2013 ◽  
Vol 68 (6) ◽  
Author(s):  
Michael Wine ◽  
Jan Hendrickx

AbstractWoody encroachment affects the biohydrology of rangelands worldwide and can increase evapotranspiration by increasing plant rooting depth, increasing the duration of the growing season, or by initiating a process of hydrologic recovery in formerly overgrazed landscapes. Eastern redcedar (Juniperus virginiana) is encroaching rapidly into rangelands in the Southern Great Plains of the USA, and beyond, including Oklahoma. However, the degree to which increasing growing season duration causes higher evapotranspiration after encroachment is not known. Here we show that increasing the duration of the growing season in north-central Oklahoma’s water-limited climate from seven months (April–October) to 12 months increases modeled evapotranspiration only marginally, from 95% to 97% of precipitation. However, this increase in evapotranspiration with woody encroachment into grassland corresponded to a two-thirds reduction in deep drainage. This study’s estimate of the hydrologic effects of eastern redcedar encroachment is likely to be highly conservative because it does not take into account the runoff-inducing effects of livestock grazing. Comparing simulated hydrologic fluxes in the present study to past work measuring runoff from grazinglands suggests that eastern redcedar encroachment into overgrazed rangelands is likely to increase evapotranspiration significantly. Whether or not eastern redcedar encroachment effects on evapotranspiration are discernable at the watershed scale will depend on the extent of encroachment throughout the watershed. Further research is necessary to quantify how the hydrologic effects of eastern redcedar encroachment vary due to climatic gradient.


Tellus B ◽  
2011 ◽  
Vol 63 (2) ◽  
Author(s):  
Margaret S. Torn ◽  
Sebastien C. Biraud ◽  
Christopher J. Still ◽  
William J. Riley ◽  
Joe A. Berry

2015 ◽  
Vol 213 ◽  
pp. 209-218 ◽  
Author(s):  
Naama Raz-Yaseef ◽  
Dave P. Billesbach ◽  
Marc L. Fischer ◽  
Sebastien C. Biraud ◽  
Stacey A. Gunter ◽  
...  

2021 ◽  
pp. 1-18
Author(s):  
J. Kelly Hoffman ◽  
R. Patrick Bixler ◽  
Morgan L. Treadwell ◽  
Lars G. Coleman ◽  
Thomas W. McDaniel ◽  
...  

2021 ◽  
Vol 13 (12) ◽  
pp. 2309
Author(s):  
Jingjing Tian ◽  
Yunyan Zhang ◽  
Stephen A. Klein ◽  
Likun Wang ◽  
Rusen Öktem ◽  
...  

Summertime continental shallow cumulus clouds (ShCu) are detected using Geostationary Operational Environmental Satellite (GOES)-16 reflectance data, with cross-validation by observations from ground-based stereo cameras at the Department of Energy Atmospheric Radiation Measurement Southern Great Plains site. A ShCu cloudy pixel is identified when the GOES reflectance exceeds the clear-sky surface reflectance by a reflectance detection threshold of ShCu, ΔR. We firstly construct diurnally varying clear-sky surface reflectance maps and then estimate the ∆R. A GOES simulator is designed, projecting the clouds reconstructed by stereo cameras towards the surface along the satellite’s slanted viewing direction. The dynamic ShCu detection threshold ΔR is determined by making the GOES cloud fraction (CF) equal to the CF from the GOES simulator. Although there are temporal variabilities in ΔR, cloud fractions and cloud size distributions can be well reproduced using a constant ΔR value of 0.045. The method presented in this study enables daytime ShCu detection, which is usually falsely reported as clear sky in the GOES-16 cloud mask data product. Using this method, a new ShCu dataset can be generated to bridge the observational gap in detecting ShCu, which may transition into deep precipitating clouds, and to facilitate further studies on ShCu development over heterogenous land surface.


Sign in / Sign up

Export Citation Format

Share Document