Floating Microsphere of Curcumin as Targeted Gastro-retentive Drug Delivery System

Author(s):  
Anupam K Sachan ◽  
Saurabh Singh ◽  
Kiran Kumari ◽  
Pratibha Devi

Microspheres carrier system made from natural or synthetic polymers used in sustained release drug delivery system. The present study involves formulation and evaluation of floating microspheres of Curcumin for improving the drug bioavailability by prolongation gastric residence time. Curcumin, natural hypoglycemic agent is a lipophilic drug, absorbed poorly from the stomach, quickly eliminated and having short half-life so suitable to formulate floating drug delivery system for sustained release. Floating microspheres of curcumin were formulated by solvent evaporation technique using ethanol and dichloromethane (1:1) as organic solvent and incorporating various synthetic polymers as coating polymer, sustain release polymers and floating agent. The final formulation were evaluated various parameters such as compatibility studies, micrometric properties, In-vitro drug release and % buoyancy. FTIR studies showed that there were no interaction between drug and excipients. The surface morphology studies by SEM confirmed their spherical and smooth surface. The mean particles size were found to be 416-618µm, practical yield of microspheres was in the range of 60.21±0.052% - 80.87±0.043%, drug entrapment efficiency 47.4±0.065% - 77.9±0.036% and % buoyancy 62,24±0.161% - 88.63±0.413%. Result show that entraptmency increased as polymer (Eudragit RS100) conc. Increased. The drug release after 12 hrs. was 72.13% - 87.13% and it decrease as a polymer (HPMC, EC) concentration was decrease.

Author(s):  
Ririyen Dessy N Siahaan ◽  
Hakim Bangun ◽  
Sumaiyah Sumaiyah

Objective: The objective of this study was to evaluate in vitro and in vivo of gastroretentive drug delivery system of cimetidine using hard alginate capsules.Methods: Drug release study was tested to various hard alginate capsules containing 200 mg cimetidine with paddle method dissolution apparatus in artificial gastric fluid pH 1.2. Concentrations of cimetidine were measured using ultraviolet spectrophotometer at 218.4 nm wavelength. The product that fulfilled the sustained release profile was evaluated for bioavailability using male rabbits at dose 9.3 mg/kg orally, and the antiulcer studies were evaluated by HCl-induced ulcer method at cimetidine dose 18 mg/kg once a day orally. Gastric lesions were evaluated by macroscopic and microscopic observations.Results: The results of drug release test showed that hard alginate capsule made from sodium alginate 500–600 cP gave sustained release profile of cimetidine for 12 h. In vivo bioavailability studies showed that cimetidine given with hard alginate capsules gave higher of Cmax, Tmax, and area under the curve of cimetidine compared to cimetidine that given with conventional hard gelatin capsules. The antiulcer studies showed that the healing effect of cimetidine that given with hard alginate capsules was faster than cimetidine given in suspension form. Cimetidine that given with hard alginate capsules macroscopically showed no gastric lesion and histopathologically also showed normal gastric mucosa of rats after 4 days treatment. However, cimetidine given in suspension form showed of 0.036±0.024 ulcer index and microscopically there was still erosion of gastric mucosa of rats after 4 days treatment.Conclusion: Floating gastroretentive of cimetidine using hard alginate capsules give a sustained release of cimetidine with better bioavailability and antiulcer effect of cimetidine.


2012 ◽  
Vol 62 (1) ◽  
pp. 71-82 ◽  
Author(s):  
Martins Emeje ◽  
Lucy John-Africa ◽  
Yetunde Isimi ◽  
Olobayo Kunle ◽  
Sabinus Ofoefule

Eudraginated polymer blends: A potential oral controlled drug delivery system for theophylline Sustained release (SR) dosage forms enable prolonged and continuous deposition of the drug in the gastrointestinal (GI) tract and improve the bioavailability of medications characterized by a narrow absorption window. In this study, a new strategy is proposed for the development of SR dosage forms for theophylline (TPH). Design of the delivery system was based on a sustained release formulation, with a modified coating technique and swelling features aimed to extend the release time of the drug. Different polymers, such as Carbopol 71G (CP), sodium carboxymethylcellulose (SCMC), ethylcellulose (EC) and their combinations were tried. Prepared matrix tablets were coated with a 5 % (m/m) dispersion of Eudragit (EUD) in order to get the desired sustained release profile over a period of 24 h. Various formulations were evaluated for micromeritic properties, drug concentration and in vitro drug release. It was found that the in vitro drug release rate decreased with increasing the amount of polymer. Coating with EUD resulted in a significant lag phase in the first two hours of dissolution in the acidic pH of simulated gastric fluid (SGF) due to decreased water uptake, and hence decreased driving force for drug release. Release became faster in the alkaline pH of simulated intestinal fluid (SIF) owing to increased solubility of both the coating and matrixing agents. The optimized formulation was subjected to in vivo studies in rabbits and the pharmacokinetic parameters of developed formulations were compared with the commercial (Asmanyl®) formulation. Asmanyl® tablets showed faster absorption (tmax 4.0 h) compared to the TPH formulation showing a tmax value of 8.0 h. The Cmax and AUC values of TPH formulation were significantly (p < 0.05) higher than those for Asmanyl®, revealing relative bioavailability of about 136.93 %. Our study demonstrated the potential usefulness of eudraginated polymers for the oral delivery of the sparingly soluble drug theophylline.


2021 ◽  
Author(s):  
Cheran K ◽  
Udaykumar B Bolmal ◽  
Archana S Patil ◽  
Umashri A Kokatanur ◽  
Rajashree S Masareddy

Abstract Background: The goal of this study was to develop a gastro retentive floating drug delivery system that would improve site specific activity, patient compliance and therapeutic efficacy.Methodology: Floating microspheres of Miglitol were formulated by double emulsion method using ethyl cellulose and eudragit E100 different weight ratio and PVA as an emulsifier. It has been prepared with respect quantity of polymer concentration and stirring speed to evaluate for % buoyancy, drug entrapment efficiency, particle size drug release rate. Result: The percent of buoyancy, drug entrapment efficiency, particle size, and percentage yield were increased with increase the polymer mixture concentration. Among all formulation batches, F6 showed acceptable results drug entrapment efficiency (86.57%) and buoyancy (94.25%). F10 formulation was prepared to check the predicted and actual factors and compared with optimized formulation F6. The drug release was increased as the polymer concentration was decrease. The kinetic model zero order had the highest regression coefficient value, it was described as a sustained release dosage form. According to ICH guideline accelerated stability studies of F6 and F10 formulations were conducted for 90 days. After 90 days buoyancy and in vitro drug release was performed and the results were F6 and F10 buoyancy was found to be 88.21%, 87.22% and in vitro drug release was found to be 62.87%, 63.51%. Conclusion: The present study, showed compatibility of drug with polymers by FTIR in formulation. Floating microsphere of Miglitol was prepared by double emulsion technique. The F6 Miglitol floating microsphere was optimized formulation demonstrated with excellent drug entrapment performance (86.57%), good floating behaviour (94.25%), and the largest particle size (670µm). The present study concludes that floating based gastro retentive delivery system of Miglitol microspheres has a safe and effective drug delivery system with increased therapeutic efficacy and a longer duration of action.


INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (09) ◽  
pp. 63-66
Author(s):  
J. C Rathi ◽  
◽  
V. Rathi ◽  
S. Tamizharasi

The objective of the present investigation is to attain optimized floating drug delivery system for aceclofenac by determining the effects of some important factors for the prolongation of gastric residence time. Floating microspheres were prepared by solvent diffusion–evaporation method using ethyl cellulose and hydroxypropylmethylcellulose. A central composite design was applied to optimize the formulation. An appropriate balance between the levels of the polymer and stirring speed was imperative to acquire maximum drug entrapment efficiency, sustained release of the drug, floating ability and adequate particle size.


2007 ◽  
Vol 25 (6) ◽  
pp. 1347-1354 ◽  
Author(s):  
Heiko Kranz ◽  
Erol Yilmaz ◽  
Gayle A. Brazeau ◽  
Roland Bodmeier

Author(s):  
Harini Amballa ◽  
Navaneetha Kaluva ◽  
Sree Giri Prasad Beri ◽  
Krishna Mohan Chinnala ◽  
Mayuri Konda

Mucoadhesive drug release system is a preferably unidirectional release system where mucosal epithelial exterior is enclosed by the mucus deposit that interacts with the bio-adhesive drug delivery system and swelling time of the buccal dosage form which is amplified by mucin molecules at the location of administration. Eplerenone is an Anti-hypertensive drug that undergoes hepatic first pass metabolism and shows 69% of bioavailability. In order to bypass the hepatic first pass metabolism the drug is designed to be delivered through buccal cavity to avoid the first pass metabolism. Eplerenone buccal tablets were formulated by using direct compression method with different polymers like HPMC K 100M, Carbopol 934P, Carbopol 974P, Xantham Gum, Eudragit L100 and NaCMC in various concentrations and compositions. Incompatibility complications were not observed from the FTIR spectrums. The formulated and prepared buccal solid dosage forms were evaluated for pre-compressions and post- compression parameters such as hardness, weight variation, thickness, friability, surface pH, swelling index, in-vitro dissolution studies, drug content uniformity, mucoadhesion strength and mucoadhesion time. Evaluation results of formulation F12 are proven to be the optimal formulation showing highest mucoadhesion time, mucoadhesion strength and in-vitro drug release for prolonged period of time about 8 hours. Eplerenone is best delivered through buccal drug delivery system to enhance its oral bioavailability and bypass the hepatic first pass metabolism.


Author(s):  
Kanuri Lakshmi Prasad ◽  
Kuralla Hari

Objective: To enhance solubility and dissolution rate of budesonide through development of solid self-nanoemulsifying drug delivery system (S-SNEDDS). Methods: Liquid self-nanoemulsifying drug delivery systems (L-SNEDDS) were prepared and ternary phase diagram was constructed using Origin pro 8. Liquid self-nanoemulsifying formulation LF2 having 20% oil and 80% of surfactant/co-surfactant was optimized from the three formulations (LF1-LF3) to convert in to solid, through various characterization techniques like self-emulsification, in vitro drug release profile and drug content estimation. The prepared L-SNEDDS converted into S-SNEDDS, SF1-SF6 by adsorption technique using Aerosil 200, Neusilin US2, and Neusilin UFL2 to improve flowability, compressibility and stability. Results: Formulation LF2 exhibited globule size of 82.4 nm, PDI 0.349 and Zeta potential -28.6 mV with drug indicating the stability and homogeneity of particles. The optimized formulation SF4 containing Neusilin UFL2 was characterized by DSC, FTIR, X-Ray diffraction studies and found no incompatibility and no major shifts were noticed. Formulation SF4 released 100 % drug in 20 min against pure drug release of 47 % in 60 min. Regardless of the form (i.e. liquid or solid) similar performance of emulsification efficiency is observed. Conclusion: The results demonstrated that the technique of novel solid self-nanoemulsifying drug delivery system can be employed to enhance the solubility and dissolution rate of poorly water-soluble drug budesonide.


2018 ◽  
Vol 33 (2) ◽  
pp. 170-181 ◽  
Author(s):  
Hongying Su ◽  
Wen Zhang ◽  
Yayun Wu ◽  
Xiaodong Han ◽  
Gang Liu ◽  
...  

Stimuli-responsive hydrogels have been widely researched as carrier systems, due to their excellent biocompatibility and responsiveness to external physiologic environment factors. In this study, dextran-based nanogel with covalently conjugated doxorubicin (DOX) was developed via Schiff base formation using the inverse microemulsion technique. Since the Schiff base linkages are acid-sensitive, drug release profile of the DOX-loaded nanogel would be pH-dependent. In vitro drug release studies confirmed that DOX was released much faster under acidic condition (pH 2.0, 5.0) than that at pH 7.4. Approximately 66, 28, and 9% of drug was released in 72 h at pH 2.0, 5.0, and 7.4, respectively. Cell uptake by the human breast cancer cell (MCF-7) demonstrated that the DOX-loaded dextran nanogel could be internalized through endocytosis and distributed in endocytic compartments inside tumor cells. These results indicated that the Schiff base-containing nanogel can serve as a pH-sensitive drug delivery system. And the presence of multiple aldehyde groups on the nanogel are available for further conjugations of targeting ligands or imaging probes.


2021 ◽  
Vol 16 (7) ◽  
pp. 1029-1036
Author(s):  
Hongzhu Wang ◽  
Mengxun Chen ◽  
Liping Song ◽  
Youju Huang

A key challenge for nanoparticles-based drug delivery system is to achieve manageable drug release in tumour cell. In this study, a versatile system combining photothermal therapy and controllable drug release for tumour cells using temperature-sensitive block copolymer coupled Au NRs@SiO2 is reported. While the Au NRs serve as hyperthermal agent and the mesoporous silica was used to improve the drug loading and decrease biotoxicity. The block copolymer acted as “gatekeeper” to regulate the release of model drug (Doxorubicin hydrochloride, DOX). Through in vivo and in vitro experiments, we achieved the truly controllable drug release and photothermal therapy with the collaborative effect of the three constituents of the nanocomposites. The reported nanocomposites pave the way to high-performance controllable drug release and photothermal therapy system.


Sign in / Sign up

Export Citation Format

Share Document