Optimization of PLGA nanoparticles for delivery of Novel anticancer CK-10 peptide

Author(s):  
Girgis Samuel ◽  
Uddin Nazim ◽  
Ahmed S.G. Srag El-Din

The main objective of this project was to formulate novel amphiphilic PLGA nanoparticles having better physicochemical properties for the delivery of the novel peptide (CK-10) to be used for targeting the cancerous/tumour tissue. Double emulsion/Solvent evaporation and novel microfluidic techniques were used to formulate the nanoparticles. Loading efficiency and in-vitro release were measured by a modified Lowry assay. Size and zeta potential were characterized by dynamic light scattering, tuneable pore resistive sensing, and laser obscuration time. Images were scanned by scanning, transmission electron microscopes, and laser obscuration time. Stability was checked by high-performance liquid chromatography and capillary zone electrophoresis. Water absorption and its associated changes in the physicochemical properties were measured by various titration techniques. PLGA/Poloxomer nanoparticles had the highest peptide loading efficiency by 56.13 % for the novel microfluidic technique as well as the highest in-vitro release and water absorption values. It also had the smallest size with the lowest PDI (208.90 nm, 0.11) which are vital parameters for targeting cancer/tumour tissue. The successful development of better physicochemical properties for the CK-10 loaded PLGA nanoparticles could improve the RAN blocking by CK-10.

2010 ◽  
Vol 46 (2) ◽  
pp. 213-218 ◽  
Author(s):  
Kajal Ghosal ◽  
Rajan Rajabalaya ◽  
Anindya Kishore Maiti ◽  
Bikramaditya Chowdhury ◽  
Arunabha Nanda

OBJECTIVES: The aim of the present investigation was to form matrix patches with ethyl cellulose (EC) as the base polymer, polyvinyl pyrrolidone (PVP) as the copolymer, plasticizer with dibutyl phthalate (DBP) or acetyl tributyl citrate (ATBC) and the drug glipizide (gz) by the solvent casting method. Physicochemical properties of the patches and in vitro drug release were determined in a modified Keshary-chien diffusion cell to optimize the patch formulations with the help of experimental data and figures for further studies. TECHNIQUES: EC and PVP of different proportions with different weight percentages of either DBP or ATBC and a fixed amount of glipizide were taken for matrix patch formations. The dried patches were used for measuring their drug contents as well as their thicknesses, tensile strengths, moisture contents and water absorption amounts in percentage. In vitro release amounts at different intervals were measured by UV-spectrophotometer. RESULTS: Drug contents varied from 96 - 99%. Thickness and tensile strength varied due to weight variation of the ingredients in the matrix patches. Moisture content and water absorption in wt % were greater for the patches containing higher amount of PVP due to its hydrophilic nature. Variations in drug release were observed among various formulations. It was found that all of the releases followed diffusion controlled zero order kinetics. Two DBP patches yielded better and more adequate release. CONCLUSIONS: The two formulations with DBP were the preferred choice for making matrix patches for further studies.


Author(s):  
Girgis Samuel ◽  
Uddin Nazim ◽  
Ahmed S. G. Srag El-Din

The main objective of this project was to overcome the drawbacks of the emulsification techniques during rising a delivery system for a novel and potent anticancer drug, CK-10, projected for enlightening the therapeutic index of the drug. Emulsion/Solvent evaporation and innovative microfluidic techniques were used to frame the nanoparticles. Loading efficiency and in-vitro release were characterized by a modified Lowry assay. Size and zeta potential were analyzed by dynamic light scattering, laser obscuration time, and tuneable pore resistive sensing. Compatibility and shelf life were tested by differential scanning calorimeter and Fourier transform infra-red. The extent of the nanoparticles degradation was measured by color indicator and potentiometric titrations. The result showed that PLGA/B Cyclodextrin nanoparticles had a higher peptide loading efficiency by 53.92% for the novel microfluidic technique as well as higher in-vitro release and better degradation. PLGA/B Cyclodextrin and PLGA/HPMA nanoparticles had a closely related size and zeta potential. It was concluded that the novel microfluidic technique could augment the physicochemical properties of the CK-10 nanoparticles to improve its pharmacokinetics and pharmacodynamics.


2019 ◽  
Vol 26 (12) ◽  
Author(s):  
Vandana Suryavanshi ◽  
Preeti K. Suresh ◽  
Chayan Das ◽  
Tungabidya Maharana

2020 ◽  
Vol 306 ◽  
pp. 112861 ◽  
Author(s):  
Juliana Ferreira de Souza ◽  
Katiusca da Silva Pontes ◽  
Thais Francine Ribeiro Alves ◽  
Cecilia Torqueti de Barros ◽  
Venancio Alves Amaral ◽  
...  

2018 ◽  
Vol 55 (2) ◽  
pp. 243-246
Author(s):  
Mircea Rivis ◽  
Alice G. Simonca ◽  
Maria M. Marin ◽  
Adina Nora Valeanu ◽  
Ileana Rau ◽  
...  

It is well known that periodontitis causes rapid destruction of gingival and bone tissues. Topical treatments are suitable because the drug can be delivered in a proper and controlled concentration. Metronidazole proved to be efficient for patients with aggressive periodontitis. By this study we aimed to obtain spongious drug delivery systems for local periodontitis treatment based on collagen, strontium renalate and metronidazole. Collagen spongious forms were obtained by lyophilisation of composite gels based on collagen:strontium ranelate (50:50) and different concentrations of metronidazole. The obtained spongious forms were characterized by FT-IR, water up-take, optic microscopy and in vitro release of metronidazole. The prepared matrices absorbed a maximum amount of water after 30 min. The most absorbent sample is the reference one (only collagen) which absorbed about 35% water; the adding of metronidazole decrease the water absorption due to its lipophilic behavior. The samples with strontium are more compact and they absorbed less water than the ones without strontium. Because the samples were not cross-linked they degrade during 24 hours of water absorption process. The drug percentage released was influenced by the drug and strontium ranelate concentrations. The analysis performed sponges indicate that these composites can be useful as drug delivery supports.


2011 ◽  
Vol 5 (2) ◽  
pp. 269-275 ◽  
Author(s):  
Wantana Reanmongkol ◽  
Nattha Kaewnopparat ◽  
Chaveewan Ratanajamit

Abstract Background: Tramadol is a centrally acting analgesic drug. Rectal administration of tramadol is useful in the treatment of post-operative pain or malignant pain in cases where it cannot be administered orally. In Thailand, tramadol is available only as a capsule for oral use and as a solution for injection. Objective: Develop tramadol hydrochloride rectal suppositories and rectal gel preparations. Methods: Tramadol rectal suppository and rectal gel were prepared. Physicochemical properties (viscosity, gel strength, mucoadhesive force) and the in vitro release of tramadol hydrochloride were investigated from different bases (Witepsol H15, polyethylene glycol, poloxamer, and hydroxyethylcellulose). The analgesic activity of rectal tramadol hydrochloride using the hot plate test was evaluated in rats. Results: Tramadol hydrochloride rectal gel using poloxamer was more mucoadhesive to the rectal mucous membrane than was the gel with the hydroxyethylcellulose base. Tramadol hydrochloride was released rapidly in vitro from both the Witepsol H15 and polyethylene glycol bases. It was completely released from the polyethylene glycol suppository base within 15 minutes. The amount of tramadol hydrochloride release from the Witepsol H15 suppository base was about 93% at 120 minutes. When using poloxamer or hydroxyethylcellulose as a rectal base, tramadol hydrochloride was released from both bases rapidly and completely released within 15 minutes. Administration of a tramadol hydrochloride suppository in rats exhibited a more pronounced analgesic effect with the polyethylene glycol base than with the Witepsol H15-based suppositories. The rectal gel had a less pronounced analgesic effect when made with the hydroxyethylcellulose base than with the poloxamer base. Conclusion: Tramadol hydrochloride suppositories and rectal gels with different bases showed rapid and almost complete drug release from the bases, prolonging the latency of a nociceptive response in in vivo experiments.


2016 ◽  
Vol 11 ◽  
pp. S36-S42
Author(s):  
Songfeng Zhao ◽  
Xiao Zhang ◽  
Xiaojian Zhang ◽  
Xiuqin Shi ◽  
Jun Li ◽  
...  

In present study, a novel minocycline hydrochloride sustained-release capsule was prepared with the new extrusion-spheronization method. The in vitro release studies were performed using marketed sample as a reference and data were analyzed in terms of cumulative release amounts as a function of time. Results demonstrated that the developed analysis method was reliable and convenient for the quantification and dissolution study of minocycline hydrochloride. The release characteristics of different batches of preparations were quite similar with each other, similarity factors f2  of 12 batches were all within 50-100, and our developed sample was similar to reference preparation in release characteristics in vitro. The developed sustained-release preparation may be a promising alternative dosage form for treatment of related diseases. 


Sign in / Sign up

Export Citation Format

Share Document