Formulation and Evaluation of Luliconazole Microsponges Loaded Gel for Topical Delivery

Author(s):  
Farhana Sultan ◽  
Himansu Chopra ◽  
Gyanendra Kumar Sharma

Microsponge containing Luliconazole (LCZ) with different proportion of drug:polymer (Ethyl cellulose and Eudragit RS 100) were obtained efficiently using Quasi-emulsion solvent diffusion method. Luliconazole is an anti-fungal drug used for the topical delivery. The purpose of the microsponge formulation is to control the release of LCZ drug to the skin through Microsponge Delivery System (MDS) known to be the novel technique which overcome the maximum concentration of active ingredient, frequency doses, and skin irritation. The prepared microsponges were examined using drug content, % production yield, % entrapment efficiency and in-vitro drug release. The formulation were subjected to in-vitro drug release studies for 6 hr in which it was concluded that Ethyl cellulose microsponges formulated by drug:polymer (1:1) and Eudragit RS 100 microsponges formulated by drug:polymer (1:3) showed maximum controlled release i.e., Increase in drug:polymer ratio (1:1 to 1:9) increased the production yield and entrapment efficiency of microsponges using Ethyl cellulose with no significant effect for Eudragit RS 100.Therefore, both formulation F1 and F2 was dispersed in carbopol gel preparation for controlled delivery of LCZ to the skin. Various physical parameters like pH, spreadability, viscosity and in-vitro drug diffusion studies were evaluated for the prepared gel formulations. Microsponge gel formulation i.e., FG1 showed better results for controlled release of 89.40% as compared to FG2 i.e., 92.18% over the period of 12 hrs which is performed in Franz Diffusion Cell. On basis of in-vitro diffusion studies for LCZ gel formulation, microsponges using Ethyl cellulose (FG1) was found to be best for its controlled release of LCZ for 12 hrs and followed zero order kinetics. Hence, formulated LCZ loaded gel have potential to treat fungal infections i.e., tinea pedis, tinea cruris and tinea corporis.

Author(s):  
Ashwin Kumar Saxena ◽  
Navneet Verma

Objective: The nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most widely used medications in the world because of their demonstrated efficacy in reducing pain and inflammation. The arthritis, pain and inflammation are effectively treated with Lornoxicam, an effective NSAIDs. Because the drug is weakly acidic, it is absorbed easily in the GI tract, and has a short biological half-life of 3 to 5 hours. To meet the objectives of this investigation, we developed a modified release dosage form to provide the delivery of lornoxicam at sustained rate which was designed to prolong its efficacy, reduce dosage frequency, and enhance patient compliance. The present research work was focused on the development of lornoxicam microspheres using natural polymer like okra gum extracted from the pods of Abelmoschus esculentus Linn. and synthetic polymer like ethyl cellulose along with sodium alginate prepared by Ca2+ induced ionic-gelation cross-linking in a complete aqueous environment were successfully formulated. Materials and Method: The microspheres were prepared by using sodium alginate with natural polymer (okra gum) and synthetic polymer (ethyl cellulose) in different ratios by Ca2+ induced ionic-gelation cross-linking. The formulations were optimized on the basis of drug release up to 12 hrs. The physicochemical characteristics of Lornoxicam microspheres such as drug polymer interaction study by Fourier Transform Infrared (FTIR) and further confirmation by Differential Scanning Calorimetry (DSC) and X-ray Diffraction (XRD). The formulated microspheres were characterized for particle size, percentage drug entrapment efficiency, micromeritic properties, surface morphology, percentage swelling index, in-vitro drug release study and mechanism of drug release. Results and Discussion: The FTIR Spectra revealed that there was no interaction between polymer and Lornoxicam which was further confirmed by DSC and XRD. All the formulated Lornoxicam microspheres were spherical in shape confirmed by SEM. The microspheres exhibited good flow properties and also showed high percentage drug entrapment efficiency. All the batches have excellent flow properties with angle of repose in the range of 25.38° ± 0.04 to 30.41° ± 0.07, carr’s index and hausner’s ratios in the range of 10.40% ± 0.018 to 16.66% ± 0.012 and 1.128 ± 0.09 to 2.225 ± 0.01, respectively. The optical microscopic studies revealed that the mean particle size of all the formulations were found in the range of 819.46 ± 0.07 to 959.88 ± 0.02 μm and percentage of drug entrapment were found to be between 72.35 ± 0.02 to 90.00 ± 0.05. Swelling index of prepared microspheres revealed that with increasing the polymer ratios, there were increase in the swelling of prepared microspheres, showing in the range of 600.76 ± 0.42 to 690.11 ± 0.03% for okra gum microspheres at the end of 9 hr in comparison with ethyl cellulose microspheres which ranges between 179.71 ± 0.07 to 227.73 ± 0.05% at the end of 7 hr. In-vitro drug release of prepared microspheres formulation code LSO4 and LSE4 were found to be 88.654 ± 0.25% and 93.971 ± 0.20% respectively at the end of 12 hr. It was suggested that increase in polymer concentration, the drug release from the prepared microspheres got retarded producing sustained release of lornoxicam. In-vitro drug release data obtained were fitted to various release kinetic models to access the suitable mechanism of drug release. Drug release from lornoxicam-loaded alginate-okra gum microspheres followed a pattern that resembled sustained release (Korsemeyer-Peppas model) (R2 = 0.9925 to 0.9951), and n ≤ 1 indicated anomalous diffusion (non-Fickian), supercase-II transport mechanism LSO4 (n = 1.039) over a period of 12 hour underlying in-vitro drug release. Moreover, zero order model (R2 = 0.9720 to 0.9949) were found closer to the best-fit Korsemeyer - Peppas model. In addition, the drug release from lornoxicam-loaded alginate-ethyl cellulose microspheres also follow Korsemeyer-Peppas model (R2 = 0.9741 to 0.9973) with near to Hixson-Crowell model (R2 = 0.9953 to 0.9985) and n < 1 indicated non-Fickian diffusion or anomalous transport mechanism. Moreover, first order model with non-Fickian diffusion mechanism (R2 = 0.9788 to 0.9918) were found closer to the best-fit Korsemeyer-Peppas model/ Hixson-Crowell model. Conclusion: The present study conclusively demonstrates the feasibility of effectively encapsulating Lornoxicam into natural polymer (okra gum) and synthetic polymer (ethyl cellulose) to form potential sustained drug delivery system. In conclusion, drug release over a period of 12 hrs, could be achieved from these prepared microspheres. A pH-dependent swelling and degradation of the optimized microspheres were also observed, which indicates that these microspheres could potentially be used for intestinal drug delivery.


Author(s):  
Chetankumar Mutagond ◽  
Vinod M R ◽  
Vijapure V M ◽  
Marapur S C ◽  
R G Patil ◽  
...  

The present study sought to develop and evaluate spray-dried microspheres of chitosan and xanthan gum for controlled release of ramipril, a widely used antihypertensive drug. The prepared microspheres were characterized by particle size analysis, scanning electron microscopic studies, differential scanning calorimetric analysis, Fourier transform infrared spectroscopy analysis, X-ray diffraction studies, drug entrapment efficiency, and in-vitro drug release study. The prepared microspheres were spherical in shape and freely flowing. The size of the microspheres was in the range of 25.7 to 47.4 µm and the drug entrapment efficiency was in the range of 74.68% to 90.44%. TheDSC analysis and X-ray diffraction studies indicated that the drug was uniformly dispersed in amorphous state in the microspheres. The in-vitro drug release indicated that the spray-dried microspheres prepared with chitosan alone were not suitable for controlled released delivery of drug as maximum amount of drug was released within 5 hrs. Whereas microspheres prepared by xanthan gum released small amount of drug within 5 hrs and more amount of drug was controlled released that fit the therapeutic needs. Drug release mechanism followed non-Fickian transport. These suggest the formulation potential of chitosan and xanthan gum for spray-dried microspheres for controlled release of ramipril


Author(s):  
REESHA PARVEZ BAIG ◽  
MOHAMMAD WAIS

Objective: The present research work of Amphotericin B Proniosomal gel focuses on improving patient compliance by reducing the side effects of conventional intravenous injections and minimizing the problem of physical stability and to localize drug at site of action. Methods: Proniosomal gels are prepared by coacervation phase separation technique using different concentration of non-ionic surfactants (Span and Tween) for uniform vesicle formation, lecithin as permeation enhancer/membrane stabilizer and cholesterol as a vesicle cement providing prolonged release. Prepared gels were evaluated for their viscosity, pH, spreadability, entrapment efficiency, drug content uniformity, extrudability, in vitro drug release, permeability and stability studies. Results: Among the nine formulations, F2 (containing 10 mg drug, 250 mg Span 60, 50 mg Soya lecithin) was found to be promising. Fourier Transform infra-red (FT-IR) spectra studies represented no interaction and physicochemical characteristics were found within the limits. The percentages of drug content and entrapment efficiency were determined to be 95.16%±0.40 and 94.20%±0.20, respectively. In vitro drug release was about 95.72%±0.30. Conclusion: Proniosomal gel could constitute a promising approach for topical delivery of Amphotericin B by encapsulating it in non-ionic surfactant to provide patient compliance with cutaneous fungal infection, which was found to be safe, tolerable and efficacious.


Author(s):  
Hemanth A. R. ◽  
G. B. Kiran Kumar ◽  
Prakash Goudanavar ◽  
Dhruva Sagar S.

Background: The main aim of the present study was to formulate and evaluate prolonged release Fluconazole liposomal gel for the transdermal delivery. Fluconazole, α-(2.4-diflurofenil)-α-(1H-triazole-1-methyl)-1H-1, 2, 4-triazole-1-ethanol, is a class of antifungal of triazole. It shows the action against species of Candida sp., and it is specified in cases of or pharyngeal candidiasis, esophageal, vaginal, and deep infection. Materials and Method: Fluconazole liposomal gel was prepared by thin film hydration method using phosphatidyl choline and cholesterol. Liposomes were characterized for entrapment efficiency, particle size, and surface charge. Liposomes were then dispersed into a Carbopol gel base to form liposomal gel and evaluated for drug content, pH, spreadability, viscosity and in-vitro drug release. Results: The results indicated that concentration of cholesterol in the formulations affected the particle size and entrapment efficiency. When the concentration of cholesterol increased particle size was also increased but decrease in entrapment efficiency. The viscosity of Fluconazole liposomal gel decreases with increasing rate of shear. Hence it was showed that with non-Newtonian flow. In-vitro diffusion studies were carried out using cellophane membrane, results showed that liposomal gel formulation F1 (91.36%) showed highest cumulative percent of drug release and formulation F8 (76.98%) showed lowest cumulative percent of drug release. Conclusion: Therefore, Fluconazole liposomal gel sustained the drug release for the longer duration, hence decreases the number of application of drugs and also improves patient compliance.


Author(s):  
Bannaravuri Thireesha ◽  
Ayya Rajendra Prasad ◽  
Haroled Peter P L

Objective: The objective of the present study was preparation and evaluation of lornoxicam microsponges to prolong their drug release up to 12 h for effective osteoarthritis, rheumatoid arthritis, and acute lumbar-sciatica therapy.Methods: Lornoxicam microsponges were prepared by the quasi-emulsion solvent diffusion technique using different concentrations of polymers such as Eudragit RS 100 and Eudragit RSPO in ethanol and dichloromethane organic solvent mixture. Microsponges were evaluated for their particle size, percentage yield, entrapment efficiency, scanning electron microscopy (SEM), and in vitro drug release studies.Results: The percentage yield, entrapment efficiency, average particle size, and in vitro drug release for optimized formulation F12 were found to be 70.23% w/w, 81.34% w/w, 172.72 μm, and 96.64% up to 8 h, respectively. From SEM, it was observed that microsponges were found to be spherical in shape with rough surface texture. The formulation F12 shows zero-order release kinetics with an r2 value of 0.961 and the value of Korsmeyer–Peppas model was found to be 0.792; it follows super case II non-Fickian diffusion. The in vitro drug release studies showed that formulations comprised varying concentrations of Eudragit RSPO in higher proportion exhibited much-retarded drug release as compared to formulations comprised a higher proportion of varying concentrations of Eudragit RS 100.Conclusion: Among all the formulations F12 shows better results, which are released more than 80% of the drug release within 8 h; hence, it is optimized. These developed microsponges are releasing the drug for a longer period, which will be effective for osteoarthritis, rheumatoid arthritis, and acute lumbar sciatica therapy.


Author(s):  
Kranthi Kumar Kotta ◽  
L. Srinivas

The present investigation focuses on the development of mucoadhesive tablets of captopril which are designed to prolong the gastric residence time after oral administration. Matrix tablets of captopril were formulated using four mucoadhesive polymers namely guar gum, xanthan gum, HPMC K4M and HPMC K15M and studied for parameters such as weight variation, thickness, hardness, content uniformity, swelling index, mucoadhesive force and in vitro drug release. Tablets formulated Xanthan gum or HPMC K4M with HPMC K15M provide slow release of captopril over period of 12 hr and were found suitable for maintenance portion of oral controlled release tablets. The cumulative % of drug release of formulation F9 and F10 were 90 and 92, respectively. In vitro release from these tablets was diffusion controlled and followed zero order kinetics. The ‘n’ values obtained from the pappas-karsemeyer equation suggested that all the formulation showed drug release by non-fickian diffusion mechanism. Tablets formulated Xanthan gum or HPMC K4M with HPMC K15M (1:1) were established to be the optimum formulation with optimum bioadhesive force, swelling index & desired invitro drug release. This product was further subjected to stability study, the results of which indicated no significant change with respect to Adhesive strength and in vitro drug release study.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Kanteepan P

Rebamipide, an amino acid derivative of 2-(1H)-quinolinone, is used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. The current research study aimed to develop novel gastro-retentive mucoadhesive microspheres of rebamipide using ionotropic gelation technique. Studies of micromeritic properties confirmed that microspheres were free flowing with good packability. The in vitro drug release showed the sustained release of rebamipide up to 99.23 ± 0.13% within 12 h whereas marketed product displayed the drug release of 95.15 ± 0.23% within 1 h. The release mechanism from microspheres followed the zero-order and Korsmeyer-Peppas (R2 = 0.915, 0.969), respectively. The optimized M12 formulation displayed optimum features, such as entrapment efficiency 97%, particle size 61.94 ± 0.11 µm, percentage yield 98%, swelling index 95% and mucoadhesiveness was 97%. FTIR studies revealed no major incompatibility between drug and excipients. SEM confirmed the particles were of spherical in shape. Optimized formulation (M12) were stable at 40°C ± 2°C/75% RH ± 5% RH for 6 months. In vivo studies were performed and kinetic parameters like Cmax, Tmax, AUC0-t, AUC0-∞, t1/2, and Kel  were calculated. The marketed product Cmax (3.15 ± 0.05 ng/mL) was higher than optimized formulation (2.58 ± 0.03 ng/mL). The optimized formulation AUC0-t (15.25 ± 1.14 ng.hr/mL), AUC0-∞ (19.42 ± 1.24 ng.hr/mL) was significantly higher than that of marketed product AUC0-t (10.21 ± 1.26 ng.hr/mL) and AUC0-∞ (13.15 ± 0.05 ng.hr/mL). These results indicate an optimized formulation bioavailability of 2.5-fold greater than marketed product.  


Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


2020 ◽  
Vol 10 (5) ◽  
pp. 649-663
Author(s):  
Reena Siwach ◽  
Parijat Pandey ◽  
Harish Dureja

Background: The rate-limiting step in the oral absorption of BCS class II drugs is dissolution. Their low solubility is one of the major obstacles in the process of drug development. Dissolution rate can be increased by decreasing the particle size to the nano range, eventually leading to increased bioavailability. Objective: : In the present study, glimepiride loaded nanoparticles were prepared to enhance the dissolution rate. The aim of the work was to examine the effect of polymer-drug ratio, solvent-antisolvent ratio and speed of mixing on in vitro release of glimepiride. Methods: Glimepiride is an antidiabetic drug belonging to the BCS class II drugs. The polymeric nanoparticles were formulated according to Box-Behnken Design (BBD) using nanoprecipitation technique. The prepared nanoparticles were evaluated for in vitro drug release, loading capacity, entrapment efficiency, and percentage yield. Result: It was found that NP-8 has maximum in vitro drug release and was selected as an optimized batch. Analysis of Variance (ANOVA) was applied to the in vitro drug release to study the fitness and significance of the model. The batch NP-8 showed 70.34 ± 1.09% in vitro drug release in 0.1 N methanolic HCl and 92.02 ± 1.87% drug release in phosphate buffer pH 7.8. The release data revealed that the nanoparticles followed zero order kinetics. Conclusion: The study revealed that the incorporation of glimepiride into gelucire 50/13 resulted in enhanced dissolution rate.


Author(s):  
Barkat Khan ◽  
Faheem Haider ◽  
Kifayat Shah ◽  
Bushra Uzair ◽  
Kaijian Hou ◽  
...  

This study was carried out to formulate and evaluate controlled release (CR) matrix tablets of Acyclovir using combination of hydrophilic and hydrophobic polymers. Acyclovir is a guanine derivative and is its half-life is short hence administered five times a day using immediate release tablets. Six formulations (F1-F6) were developed using Ethocel and Carbopol in equal combinations at drug-polymer (D:P) ratio of 10:5, 10:6, 10:7, 10:8, 10:9 and 10:10. Solubility study was performed using six different solvents. The compatibility studies were carried out using FTIR and DSC. According to USP, Quality Control and dimensional tests (hardness, friability, disintegration and thickness) were executed. In-vitro drug release studies of Acyclovir was carried out in dissolution apparatus using using 0.1 N HCl medium at constant temperature of 37 ± 0.5 ºC. In order to analyze the drug release kinetics, five different mathematical models were applied to the release data. The results showed that there was no incompatibility between drug and polymers. Physical QC tests were found within limits of USP. The release was retarded upto 24 hrs and non-fickian in-vitro drug release mechanism was found. A formulation developed using blend of polymers, showed excellent retention and desired release profiles thus providing absolute control for 24 hrs.


Sign in / Sign up

Export Citation Format

Share Document