Precessional Vortex Characteristics according to the Swirl Number in the Draft tube at Turbine Mode of a Pump-Turbine

2019 ◽  
Vol 22 (5) ◽  
pp. 5-12
Author(s):  
Chan Lee ◽  
Jun-Won Suh ◽  
Young-Seok Choi ◽  
Jun-Gwan Park ◽  
No-Hyun Park ◽  
...  
Author(s):  
X D Lai ◽  
Q W Liang ◽  
X M Chen ◽  
Q Q Gou ◽  
D X Ye ◽  
...  

2021 ◽  
Vol 24 (6) ◽  
pp. 12-21
Author(s):  
Seung-Jun Kim ◽  
Jun-Won Suh ◽  
Hyeon-Mo Yang ◽  
Jungwan Park ◽  
Jin-Hyuk Kim

2021 ◽  
Vol 774 (1) ◽  
pp. 012070
Author(s):  
D. Biner ◽  
S. Alligné ◽  
V. Hasmatuchi ◽  
C. Nicolet ◽  
N. Hugo ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4732
Author(s):  
Jing Yang ◽  
Yue Lv ◽  
Dianhai Liu ◽  
Zhengwei Wang

Pumped-storage power stations play a regulatory role in the power grid through frequent transition processes. The pressure pulsation in the draft tube of the pump-turbine under transient processes is important for safe operation, which is more intense than that in the steady-state condition. However, there is no effective method to obtain the exact pressure in the draft tube in the transient flow field. In this paper, the pressure in the draft tube of a pump-turbine under steady-state and transient conditions are studied by means of CFD. The reliability of the simulation method is verified by comparing the real pressure pulsation data with the test results. Due to the distribution of the pressure pulsation in the draft tube being complex and uneven, the location of the pressure monitoring points directly affects the accurate judgement of cavitation. Eight monitoring surfaces were set in the straight cone of the draft tube and nine monitoring points were set on each monitoring surface to analyze the pressure differences on the wall and inside the center of the draft tube. The relationships between the pressure pulsation value inside the center of the draft tube and on the wall are studied. The “critical” wall pressure pulsation value when cavitation occurs is obtained. This study provides references for judging cavitation occurrences by using the wall pressure pulsation value in practical engineering.


2014 ◽  
Vol 6 ◽  
pp. 467235 ◽  
Author(s):  
Jin-Hyuk Kim ◽  
Risa Kasahara ◽  
Toshiaki Kanemoto ◽  
Toru Miyaji ◽  
Young-Seok Choi ◽  
...  

2020 ◽  
Vol 153 ◽  
pp. 1465-1478
Author(s):  
Guocheng Lu ◽  
Deyou Li ◽  
Zhigang Zuo ◽  
Shuhong Liu ◽  
Hongjie Wang
Keyword(s):  

Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2554 ◽  
Author(s):  
Seung-Jun Kim ◽  
Jun-Won Suh ◽  
Young-Seok Choi ◽  
Jungwan Park ◽  
No-Hyun Park ◽  
...  

Pump-turbines are often used to provide a stable power supply with a constant frequency in response to intermittent renewable energy resources. However, existing pumped-storage power stations often operate under off-design conditions because of the increasing amounts of inconsistent renewable resources that have been added to the grid. Under off-design low flow rate conditions, inter-blade vortex and vortex rope phenomena usually develop in the runner and draft tube passages, respectively, in turbine mode. These vortices cause complicated flow patterns and pressure fluctuations that destabilize the operation of the pump-turbine system. Therefore, this study investigates the influence of correlation between the inter-blade vortex and vortex rope phenomena under low flow rate conditions. Three-dimensional steady- and unsteady-state Reynolds-averaged Navier–Stokes equations were calculated with a two-phase flow analysis using a shear stress transport as the turbulence model. The inter-blade vortices in the runner passages were captured well at the low flow rate conditions, and the vortex rope was found to develop within a specific range of low flow rates. These vortex regions showed a blockage effect and complicated flow characteristics with backflow in the passages. Moreover, higher unsteady pressure characteristics occurred at locations where the vortices were especially pronounced.


2019 ◽  
Vol 22 (6) ◽  
pp. 5-13
Author(s):  
Ujjwal Shrestha ◽  
Patrick Mark Singh ◽  
Young Do Choi

Sign in / Sign up

Export Citation Format

Share Document