scholarly journals Schumpeter, Neo-Schumpeterianism, and Stra.Tech.Man Evolution of the Firm

2019 ◽  
Vol 5 (2) ◽  
pp. 80
Author(s):  
Dimos Chatzinikolaou ◽  
Charis Vlados

The Schumpeterian way of thinking for the analysis of innovation, as an evolutionary socioeconomic phenomenon, seems to be still of particular usefulness while the fundamental contribution by Nelson and Winter with the “evolutionary theory of economic change” is nowadays one of the most widely cited references in the contexts of “neo-Schumpeterianism.” In a similar evolutionary concern, Vlados (2004) also examines the “dynamics of the triangle of strategy, technology, and management” (Stra.Tech.Man synthesis). The aim of this article is, in particular, to find out to what extent the Stra.Tech.Man approach utilizes and enriches some of the fundamental neo-Schumpeterian contributions by focusing mostly on the evolutionary theory of the firm, the use of evolutionary biology on analyzing socioeconomic phenomena, and the interpretation of structural change into the context of global dynamics. To achieve this goal, we first distinguish some of the criteria/filters that allow for evaluating whether a research contribution can be of neo-Schumpeterian direction. These criteria also help to identify generic concepts of recent neo-Schumpeterian trends in order to formulate a new analytical background based on the Stra.Tech.Man approach.

Author(s):  
Gino Cattani ◽  
Mariano Mastrogiorgio

The publication of ‘An Evolutionary Theory of Economic Change’ by Nelson and Winter has had a major impact on economics and related fields such as innovation and strategy. All of these fields have developed owing to recent re-examinations and extensions of evolutionary theory. A paradigm that underlies several studies in this tradition is the concept of neo-Darwinian evolution—the idea that the unit of the evolutionary process (e.g. a technological artefact) is subject to a dynamic of variation, selection, and retention leading to adaptation to a predefined function. This book refers to the frameworks of punctuated equilibrium, speciation, and exaptation, which, despite their significant influence in evolutionary biology, have been reflected only partially in evolutionary approaches to economics, innovation, and strategy. This chapter introduces the book’s aim to fill this gap, and outlines the approaches and perspectives of each of the chapters.


2017 ◽  
Vol 7 (5) ◽  
pp. 20160145 ◽  
Author(s):  
Douglas J. Futuyma

Evolutionary theory has been extended almost continually since the evolutionary synthesis (ES), but except for the much greater importance afforded genetic drift, the principal tenets of the ES have been strongly supported. Adaptations are attributable to the sorting of genetic variation by natural selection, which remains the only known cause of increase in fitness. Mutations are not adaptively directed, but as principal authors of the ES recognized, the material (structural) bases of biochemistry and development affect the variety of phenotypic variations that arise by mutation and recombination. Against this historical background, I analyse major propositions in the movement for an ‘extended evolutionary synthesis’. ‘Niche construction' is a new label for a wide variety of well-known phenomena, many of which have been extensively studied, but (as with every topic in evolutionary biology) some aspects may have been understudied. There is no reason to consider it a neglected ‘process’ of evolution. The proposition that phenotypic plasticity may engender new adaptive phenotypes that are later genetically assimilated or accommodated is theoretically plausible; it may be most likely when the new phenotype is not truly novel, but is instead a slight extension of a reaction norm already shaped by natural selection in similar environments. However, evolution in new environments often compensates for maladaptive plastic phenotypic responses. The union of population genetic theory with mechanistic understanding of developmental processes enables more complete understanding by joining ultimate and proximate causation; but the latter does not replace or invalidate the former. Newly discovered molecular phenomena have been easily accommodated in the past by elaborating orthodox evolutionary theory, and it appears that the same holds today for phenomena such as epigenetic inheritance. In several of these areas, empirical evidence is needed to evaluate enthusiastic speculation. Evolutionary theory will continue to be extended, but there is no sign that it requires emendation.


2007 ◽  
Vol 362 (1483) ◽  
pp. 1241-1249 ◽  
Author(s):  
Stephen P Diggle ◽  
Andy Gardner ◽  
Stuart A West ◽  
Ashleigh S Griffin

The term quorum sensing (QS) is used to describe the communication between bacterial cells, whereby a coordinated population response is controlled by diffusible molecules produced by individuals. QS has not only been described between cells of the same species (intraspecies), but also between species (interspecies) and between bacteria and higher organisms (inter-kingdom). The fact that QS-based communication appears to be widespread among microbes is strange, considering that explaining both cooperation and communication are two of the greatest problems in evolutionary biology. From an evolutionary perspective, intraspecies signalling can be explained using models such as kin selection, but when communication is described between species, it is more difficult to explain. It is probable that in many cases this involves QS molecules being used as ‘cues’ by other species as a guide to future action or as manipulating molecules whereby one species will ‘coerce’ a response from another. In these cases, the usage of QS molecules cannot be described as signalling. This review seeks to integrate the evolutionary literature on animal signalling with the microbiological literature on QS, and asks whether QS within bacteria is true signalling or whether these molecules are also used as cues or for the coercion of other cells.


Author(s):  
Gino Cattani ◽  
Mariano Mastrogiorgio

Evolutionary thinking has grown significantly and has had a profound impact on various fields such as economics, strategy, and technological innovation. An important paradigm that underlies the evolutionary theory of innovation is neo-Darwinian evolution. According to this paradigm, evolution is gradualist and is based on the mechanisms of variation, selection, and retention. Starting from the 1970s, new theoretical advancements in evolutionary biology have recognized the central role of punctuated equilibrium, speciation, and exaptation in evolution and of Woesian dynamics. However, despite their significant influence in evolutionary biology, these advancements have been reflected only partially in evolutionary approaches to economics, strategy, and technological innovation. This chapter reviews these advancements and explores their key implications for innovation, such as the role of serendipity and unpre-stateability leading to disequilibrium in economics systems, and the importance of adopting an option-based logic during the innovation process.


Author(s):  
Alexander Vucinich

The Russian scientific community welcomed Darwin’s evolutionary theory and made it a basis of research in a wide range of biological sciences. Russian evolutionary studies in embryology, paleontology, microbiology and pathology attracted international attention. The vast scope of Darwin’s popularity in Russia was dramatically manifested in 1909, on the occasion of the national celebration of the 100th anniversary of the birth of the great English scientist and the 50th anniversary of the publication of The Origin of Species. All universities, naturalist societies, and many newspapers and popular journals took part in the celebration, which produced a hundred praiseful publications on Darwinian themes. University philosophers, steeped in metaphysical idealism and spiritualism, linked Darwinism to what they called ‘modern scientific materialism’ and rejected it wholly. They were strongly predisposed to welcome modern revivals of metaphysical vitalism. Freelance philosophers, usually associated with heterodox ideological movements and influenced by Auguste Comte’s positivism or various modern neopositivist and Neo-Kantian currents, credited Darwinism with making science a major topic of modern philosophy. A new discipline, known as ‘scientific philosophy’, rapidly developing in the West, made its first appearance in Russia. In the Soviet Union, Darwin’s evolutionary theory followed a course of cataclysmic ruptures. During the 1920s, Soviet scientists made significant contributions to the study of the role of the genetic environment in biological evolution and helped set the stage for an evolutionary synthesis of Darwinism and genetics. The Stalinist era (1929–53) marked a drastic departure from the prevalent currents in evolutionary biology. It was dominated by the rise of Lysenkoism, a pseudo-science identified as ‘creative Darwinism’, and was guided by a diluted version of the Lamarckian idea of evolution as a product of the inheritance of acquired characteristics. Lysenkoism rejected the Darwinian conception of natural selection, downgraded the role of physico-chemical analysis in biology, and paid no attention to molecular biology. In 1948 Lysenkoism was officially recognized as the Marxist theory of evolution. Under Lysenko’s influence, genetics was proclaimed a ‘bourgeois science’ and was made illegal. The downfall of Lysenkoism in 1964 brought the re-establishment of genetics, a full-scale return to true Darwinism, and a re-intensified interest in ‘evolutionary synthesis’.


2010 ◽  
Vol 18 (3) ◽  
pp. 287-296 ◽  
Author(s):  
Patrick Bateson

Charles Darwin has had an extraordinary impact on many aspects of human affairs apart from revolutionizing biology. On the 200th anniversary of his birth, the Cambridge Darwin Festival in July 2009 celebrated these contributions to the humanities, philosophy and religion and the approach to medicine, economics and the social sciences. He is a man to revere. It is no discredit to him that the science of evolutionary biology should continue to evolve. In this article I shall consider some of the ways in which this has happened since his day.


2019 ◽  
Vol 57 (3) ◽  
pp. 346-371
Author(s):  
Mikhail B. Konashev

Th. Dobzhansky played a special role in the reception and development of the “synthetic theory of evolution,” as well as in the establishment of scientific connections between Soviet and U.S. evolutionists, and first and foremost, geneticists. These connections greatly influenced the development of Soviet genetics, of evolutionary theory and evolutionary biology as a whole, and in particular the restoration of Soviet genetics in the late 1960s. A discussion of Dobzhansky’s correspondence and collaboration with colleagues in his native country, moreover, allows for an improved understanding of the complex and dramatic history of Soviet genetics and evolutionary theory. It also provides novel insights into the interactions between scientists and authorities in the Soviet Union (USSR).


Sign in / Sign up

Export Citation Format

Share Document