scholarly journals Genetic parameter estimates for important traits on the fifth generation in red tilapia in Vietnam

2021 ◽  
Vol 20 (1) ◽  
pp. 49-57
Author(s):  
Sang V. Nguyen

Genetic parameters comprising heritability, genetic correlation and genotype by environment interaction (GxE) for growth survival rate and body colour at harvest were estimated on the 5th selective generation of red tilapia grown in two environments, freshwater and brackishwater ponds. A total of 116 full-half-sib families was produced as well as 4,432 and 3,811 tagged individuals were tested in freshwater and brackishwater ponds, respectively. Genetic parameters were estimated by ASReml 4.1 software. The heritability for body weight and survival rate was high while medium heritability for body colour in freshwater was observed. The heritability for those traits of red tilapia in brackishwater. Together with the figures in earlier publication on previous generations (G1 to G4) in the same selective population, the expected medium to high response acquires if selection is done for each trait. Genetic correlations among harvest body weight, survival rate and body colour are insignificantly different and ranging from -0.25 to 0.37 (P > 0.05). These results implied that selection on one trait do not influence on responses of the other traits. GxE interaction for body weight and body colour between two tested environments is mostly negligible with genetic correlations ranging from 0.63 - 0.80 while it is important for survival trait (rg = -0.17 ± 0.40).


Genetics ◽  
1996 ◽  
Vol 143 (3) ◽  
pp. 1409-1416 ◽  
Author(s):  
Kenneth R Koots ◽  
John P Gibson

Abstract A data set of 1572 heritability estimates and 1015 pairs of genetic and phenotypic correlation estimates, constructed from a survey of published beef cattle genetic parameter estimates, provided a rare opportunity to study realized sampling variances of genetic parameter estimates. The distribution of both heritability estimates and genetic correlation estimates, when plotted against estimated accuracy, was consistent with random error variance being some three times the sampling variance predicted from standard formulae. This result was consistent with the observation that the variance of estimates of heritabilities and genetic correlations between populations were about four times the predicted sampling variance, suggesting few real differences in genetic parameters between populations. Except where there was a strong biological or statistical expectation of a difference, there was little evidence for differences between genetic and phenotypic correlations for most trait combinations or for differences in genetic correlations between populations. These results suggest that, even for controlled populations, estimating genetic parameters specific to a given population is less useful than commonly believed. A serendipitous discovery was that, in the standard formula for theoretical standard error of a genetic correlation estimate, the heritabilities refer to the estimated values and not, as seems generally assumed, the true population values.



2000 ◽  
Vol 2000 ◽  
pp. 112-112 ◽  
Author(s):  
J.E. Pryce ◽  
R.F. Veerkamp

Getting reliable genetic parameter estimates for dry matter intake is difficult because recording it is expensive, hence it is tempting to combine data from research herds. However, there are large differences in feeding and management systems, which causes differences in means across herds. Furthermore, variances or heritabilities may differ and genetic correlations may be less than one between herds. This is one of the reasons why it is important to investigate effects of genotype by environment interaction (GxE). Another reason is that it is important to understand how high genetic merit cows perform in different feeding systems. The objective of this study was to estimate the effect of GxE for three feeding systems at two research herds belonging to ID-Lelystad (ID) and to SAC/University of Edinburgh (Langhill).



2008 ◽  
Vol 48 (8) ◽  
pp. 1110 ◽  
Author(s):  
D. L. Robinson

There is an increasing trend towards integrated research, in which several individuals or institutions pool their expertise and make use of common resources, collaborating towards a common set of scientific goals. Integrated research enables a larger number of factors to be investigated, and the most influential or important ones identified, providing information on how the different factors interact or fit together. Good experimental design is, however, required to ensure the aims can be achieved and resources spent wisely. Issues involved in the experimental design of the Australian Beef Cattle Cooperative Research Centre for Meat Quality are discussed. Theoretical results and simulation studies were used to determine optimal numbers of progeny per sire for estimating genetic parameters. For heritabilities of 0.2 and 0.5, the optima are respectively 21 and 9 progeny with recorded measurements. The curves surrounding the optima are quite flat, so aiming for 10–15 progeny with measurements per trait should provide reasonable accuracy in many situations. Estimates of heritabilities, genetic correlations and phenotypic variances have lower sampling correlations than genetic variances and covariances, suggesting that when results are pooled over different breeds or trials, it is better to pool estimates of heritabilities and genetic correlations than (co)variances. Using sires in more than one year increases the robustness of estimated sire effects and increases the accuracy of genetic parameter estimates for hard-to-measure traits (e.g. feed efficiency) that are not recorded on all animals. Unless sires can be chosen as a true random sample of the population, arrangements of link sires (and other effects such as treatments) should be chosen to provide accurate estimates when all terms in the model are fitted as fixed.



FLORESTA ◽  
2021 ◽  
Vol 51 (4) ◽  
pp. 937
Author(s):  
Paulo César Flôres Júnior ◽  
Vanessa Ishibashi ◽  
Jorge Luis Monteiro de Matos ◽  
Diego Tyszka Martinez ◽  
Antonio Rioyei Higa

Forest species breeding programs require a long period-of-time for plants to reach the proper age to enable selecting superior genotypes, which is a critical factor in selection processes. Thus, the aims of the current study are to estimate genetic parameters in juvenile and adult plants (6, 10 and 20 years) in order to investigate genetic correlations between variables at different ages and at certain ages; as well as to determine whether it is possible performing efficient early selection in juvenile plants. The test was implemented in 1997; it comprised 120 progenies and followed a randomized block design, with five repetitions - linear plots comprised 5 plants at 2.5 m x 2.5 m spacing. DBH (cm), H (m) and VOL (m³) of all tested subjects were measured at the age of 6, 10 and 20 years. Variance components, genetic parameters, as well as genetic correlations between variables and between ages were estimated in Selegen REML/BLUP® software. Genetic parameter estimates have shown superiority at 10 years, in comparison to that estimated at 6 and 20 years. Variable ‘DBH’ has shown high genetic correlation to height (H) and volume (VOL), whereas DBH x VOL have shown high genetic correlation (0.98) in 10-year-old plants. With respect to genetic correlation between ages, 10-year-old plants have shown moderate correlation to 6- and 20-year-old plants. Early selection is indicated for 10-year-old plants, in 20-year cycles, since plants at this age have shown higher selection efficiency to predict gains in comparison to adult plants.



2021 ◽  
Vol 20 (1) ◽  
pp. 39-48
Author(s):  
Dung T. P. Tran

Genetic parameters were estimated for resistant traits against Enteric Septicemia of Catfish (ESC) on the first generation of selection on striped catfish. In total, 8,207 and 5,838 individuals from 147 and 130 full-sib families were challenged by Edwardsiella ictaluri causing ESC on fingerlings and tested growth in pond accordingly. Harvest body weight (HW), length (HL) and survival (SURGROW) from grow-out test and ESC resistant traits such as binary alive-dead survival (SUR) and time to dead (TIME) at different truncated points from challenged test of fingerlings were recorded. Heritability for each trait and genetic correlations among these recorded traits were estimated. High heritabilities were found for HW (0.48) and HL (0.47), and mostly from medium to high values were estimated for SURGROW (0.23), SUR (0.13 - 0.40) and TIME (0.25 - 0.39). Genetic correlations among different truncated SUR and TIME traits were almost highly positive (0.57 - 0.99). Genetic correlations among different truncated SUR and TIME traits with HW and SURGROW were low positive (0.10 - 0.40). In summary, selection for ESC resistance would not negatively affect the growth in fingerling stage.



1995 ◽  
Vol 25 (8) ◽  
pp. 1397-1408 ◽  
Author(s):  
M.J. Dieters ◽  
T.L. White ◽  
G.R. Hodge

Data from 171 full-sib tests of slash pine (Pinuselliottii Engelm. var. elliottii) measured at multiple ages between 4 and 15 years, were used to obtain restricted maximum likelihood (REML) estimates of variance components. These tests included over 2100 full-sib families, from more than 700 first-generation parents, represented by some 170 000 individuals. Analyses were completed of each test, and using standardized data, of all possible pairs of connected tests (tests with five or more common parents). Heritability, proportion of dominance variance, type B genetic correlations (which examine genotype × environment interactions), and age-age genetic correlations were estimated from the REML variance component estimates. The average heritability of volume was 0.07 at 5 years, which increased to 0.12 at 11 and 14 years of age. These heritability estimates are similar to, though slightly smaller than, previous estimates obtained from open-pollinated tests. There was approximately 1.6 times as much additive variance as dominance variance at 5 years of age, increasing to more than 2 times at 11 or more years of age. Although the relative importance of dominance variance in tree volume apparently declines with age, the existence of dominance variance may warrant some changes to the current breeding strategy. Estimates of type B genetic correlations increased from around 0.6 at 5 years to over 0.8 at 14 years, and so the importance of genotype × environment interaction appears to decline with age. These estimates of type B genetic correlations and also the estimates of age-age genetic correlations are similar to estimates from open-pollinated tests.



2006 ◽  
Vol 46 (2) ◽  
pp. 213 ◽  
Author(s):  
N. J. Corbet ◽  
R. K. Shepherd ◽  
H. M. Burrow ◽  
K. C. Prayaga ◽  
J. van der Westhuizen ◽  
...  

Genetic parameters were estimated for growth and fertility indicator traits in a South African beef cattle population. Measurements on 5601 pedigreed progeny of 96 Bonsmara sires, 18 Belmont Red sires and 20 Bonsmara × Belmont Red cross sires were recorded over 19 years in 4 diverse climatic regions of South Africa. Growth traits were measured on growing stock from birth to 18 months at pasture. Cow weights were measured at calving and weaning. Age at first calving, and repeated measurements of calving day and calving interval were recorded on 1993 breeding females as indicators of reproductive performance. The traits were analysed using univariate and bivariate animal models with maternal effects fitted. Direct heritability of growth traits (0.11–0.42) and female fertility traits (0.02–0.13) suggested that genetic progress could be made by selection for some traits. Genetic correlations between growth and fertility traits were variable (–0.47–0.85) and indicated that multi-trait selection would be the best method of dealing with multidirectional forces on productivity traits. Genetic correlations between direct and maternal effects on liveweight traits were mostly negative indicating that genetic improvement of traits with strong maternal influence, such as weaning weight, would be complicated and supported the use of post-weaning weights with less maternal influence as selection criteria to improve the direct additive component of growth. The genetic parameter estimates provide useful reference values for estimation of breeding values in a proposed combined-breed genetic evaluation program.



2016 ◽  
Vol 59 (2) ◽  
pp. 209-213 ◽  
Author(s):  
Hafedh Ben Zaabza ◽  
Abderrahmen Ben Gara ◽  
Hedi Hammami ◽  
Borni Jemmali ◽  
Mohamed Amine Ferchichi ◽  
...  

Abstract. Multi-trait Bayesian procedure was used to estimate genetic parameters for reproductive traits in Tunisian Holstein cows. A total of 31 348 lactations of the calving years 2005 to 2012 were analyzed. Fertility traits were the calving interval (CI), days open (DO), days to first insemination (DFI), days from first insemination to conception (FIC), and number of inseminations per conception (NI). Posterior means of heritabilities of CI, DO, DFI, FIC, and NI were 0.047, 0.03, 0.025, 0.024, and 0.069, respectively. Posterior means of repeatabilities of the same respective traits were 0.106, 0.094, 0.051, 0.036, and 0.17. Genetic correlations among female fertility traits were also computed. Calving interval and DO had the highest genetic correlation estimate (0.85) because they have overlapping genetic meanings. The lowest genetic correlation estimate (−0.25) was found between DFI and NI. Genetic parameter estimates are low and are even lower than those reported in most literature, implying that more focus should be put upon improving the management of reproduction in dairy cattle herds in Tunisia.



2012 ◽  
Vol 57 (No. 4) ◽  
pp. 160-170 ◽  
Author(s):  
L. Vostrý ◽  
J. Přibyl ◽  
P. Šimeček

The estimated genetic parameters were used for selection of important conformation traits and reduction in the number of the described characteristics. For reduction in the number of described traits from the original 36 to 24, the traits were selected according to: measure of genetic similarity (cluster analysis), measure of uncertainty multidimensional quantity, value of the variance of aggregate genotype, value of the variance of selection index and correlation of trait to the first principal component of the genetic matrix. Reduction in the number of the described traits was based on the value of heritability coefficient and genetic correlations matrix. The reliabilities of selection indexes were estimated between 0.41 and 0.53. Among the three multivariate analysis methods evaluated in this study, the variance of selection index had the highest reliabilities of selection indexes. The estimation of selection index variance which omitted traits with low heritability coefficient and high genetic correlation was the most suitable for the traits selection. This procedure would enable the breeders to reduce field costs (e.g. time, labour) required for obtaining the genetic parameter estimates necessary for a specific breeding programme.  



Sign in / Sign up

Export Citation Format

Share Document