OPTIMIZATION OF PRODUCING MECHANICAL ALLOYED COMPOSITE POWDER MATERIALS FOR WEAR-RESISTANT SPRAYED PLASMA COATINGS

Author(s):  
Aleksei Sergeyevich Fedosenko ◽  
Fedor Grigoryevich Lovshenko ◽  
Grigory Fedorovich Lovshenko Lovshenko
2021 ◽  
Vol 20 (5) ◽  
pp. 369-374
Author(s):  
V. A. Okovity ◽  
F. I. Panteleenko ◽  
V. V. Okovity ◽  
V. M. Astashinsky

The paper presents studies on the optimization of the process of applying coatings from cermet powders with different solid phase contents by plasma spraying in air to restore and harden parts of machines and mechanisms operating under adverse conditions. Such conditions are usually created in heavily loaded tribojoints when the mechanisms operate at a low speed of relative movement of surfaces during friction. At the same time, the destruction of the working surfaces is mainly due to the process of microcontact setting and subsequent detachment of the formed particles at their contact points. The application of special protective coatings with the required properties is possible with the manufacture of high-quality starting powder materials and optimization of the technology for their application. Such powders and powder compositions can be obtained by the method of agglomeration of a fine powder mixture with its subsequent high-temperature sintering. To identify the hardening mechanism of composite coatings made of cermet by gas-thermal spraying, important stages are the optimization of the deposition process parameters and the study of the properties of plasma coatings obtained in this case. When optimizing the technological parameters of plasma spraying of coatings, the utilization rate of the sprayed powder material has been taken into account as the main indicator of the process efficiency, the structure of the obtained layers, and the morphology of individual particles deposited on the polished surface. The paper provides data on the structural elements of sprayed materials for wear-resistant coatings obtained by plasma spraying at optimal conditions. Taking into account the processes that occur during the wear of tribological conjugations, the data indicate the existing prerequisites for the wear resistance of the studied composite coatings made of metal ceramics. Special wear-resistant coatings made of materials with a soft matrix hardened by solid inclusions Al2O3–TiO2–Ni–Cr–Al–Y are widely used in various industries. Based on the detailed analysis of the features of cermet plasma coatings, it can be stated that such powder compositions (complex oxides-metal component) are often used as wear-resistant plasma coatings. The research results can be taken into account in cases of application of wear-resistant plasma coatings made of metal-ceramics and compositions based on them, containing solid phases in the form of oxides, as well as the manufacture of a whole range of parts operating under conditions of intense wear.


Author(s):  
I. N. Kravchenko ◽  
◽  
T. A. Chekha ◽  
A. A. Sevryukov ◽  
A. F. Slivov ◽  
...  

Author(s):  
T. I. Bobkova ◽  
B. V. Farmakovsky ◽  
N. A. Sokolova

The work deals with topical issues such as development of composite nanostructured powder materials. The results of creating powders based on the system “aluminum–nitride of silicon” are presented. Complex investigations of the composition, structure and properties of powder materials, as well as coatings formed on their basis by supersonic cold gas dynamic spraying, were carried out. It has been found that the high-energy treatment of a powder mixture of aluminum with nanofibers of silicon nitride provides the formation of a composite powder in which a new phase of the Si(1-х)AlхO(1-х)Nх type is formed, which additionally increases the hardness in the coatings to be sprayed.


Author(s):  
T. I. Bobkova ◽  
R. Yu. Bystrov ◽  
A. A. Grigoriev ◽  
E. A. Samodelkin ◽  
B. V. Farmakovsky

This paper presents results of a study of complex processes for producing composite powder materials from tungsten carbide and metallic chromium. Technological methods for the formation of functionally gradient coatings with high microhardness up to 426 HV through microplasma spraying technology are disclosed.


Author(s):  
I. N. Kravchenko ◽  
Yu. A. Kuznetsov ◽  
A. L. Galinovskii ◽  
S. A. Velichko ◽  
P. A. Ionov ◽  
...  

1987 ◽  
Vol 26 (4) ◽  
pp. 334-338 ◽  
Author(s):  
G. Kh. Karapetyan ◽  
N. L. Akopov ◽  
F. Kh. Karapetyan ◽  
N. N. Manukyan

Author(s):  
V V Ivancivsky ◽  
V Yu Skeeba ◽  
E A Zverev ◽  
N V Vakhrushev ◽  
K A Parts

1987 ◽  
Vol 26 (5) ◽  
pp. 421-424
Author(s):  
G. Kh. Karapetyan ◽  
N. L. Akopov ◽  
F. Kh. Karapetyan ◽  
N. N. Manukyan

Sign in / Sign up

Export Citation Format

Share Document