scholarly journals Optimization of palm oil biodiesel production using response surface methodology

2021 ◽  
Vol 56 (2) ◽  
pp. 274-285
Author(s):  
Flávio Castro da Silva ◽  
Juan Fernando Herrera Guardiola ◽  
Luciana Pinto Teixeira ◽  
Ana Caroline Lopes Maria ◽  
Luan Alves de Souza ◽  
...  

The purpose of this paper was to analyze palm oil biodiesel production under different conditions and to verify the relationships between production variables in order to optimize biofuel production using response surface methodology (RSM). Biodiesel was produced through transesterification process by methyl route and alkali catalyst (NaOH) 1% (m/m). The analyzed variables were: four molar ratios (3:1, 4:1, 6:1 and 8:1); three temperature reactions (45°, 52° and 60°C); and three time reactions (40, 60 and 80 minutes). For the palm oil biodiesel production, the highest yield was 93%, obtained via a molar rate of 3:1, 52°C and 60 minutes. This result differs from previous studies that found a higher yield with molar ratio increases, implying greater expenses of methanol. Kinetic viscosity and specific mass were also analyzed, and the values are within the Brazilian, American, and European standards. The results showed that the most influent factor in biodiesel production was the molar rate. In relation to the biodiesel characterization, using the RMN H1 technique, it was possible to obtain the transesterification reaction yield of 79.50% for the 3:1 palm oil biodiesel. Through gas chromatography, it can be verified that the predominant fatty acids in the samples were palmitic and oleic acids.

2021 ◽  
Author(s):  
TOGAYHAN KUTLUK

Abstract This study was executed that optimize an environmentally friendly lipase (Resinase® HT with the activity of 135,56 U/ml) catalyzed transesterification process from novel feedstock waste filter coffee oil for biofuel production. Response surface methodology (RSM) with the central composite design was performed to investigate the effect of experimental factors (enzyme content, oil/methanol molar ratio, reaction temperature) on the fatty acid methyl ester (FAME) conversion and also investigated to resolve the optimum design points. After the experimental studies the lowest FAME conversion was found as 71% when the enzyme content was 15%(%gr w/w), oil/methanol molar ratio was 0.17 and the reaction temperature value was 45 °C. According to the design response, 70.83% was observed in the same conditions. The highest FAME conversion of 97% was found when the enzyme content was 5%(%gr w/w), oil/methanol molar ratio was 0.25 and the reaction temperature value was 35 °C. The experimental run gave the FAME conversion of 96.80% at the same reaction conditions. The model fitted with the experimental values with R2 = 0.98. Also, classical soxhlet extraction and Dyer method oil yields were compared. 24 % and 20 % oil removed from waste coffee grounds in traditional soxhlet and Dyer method respectively. The extraction process took 30 minutes with the soxhlet method and 45 minutes with the Dyer method. The results are promising for the application of lipase catalyst for environmentally friendly and sustainable biodiesel production from waste coffee oils all over the world.


2015 ◽  
Vol 4 (4) ◽  
Author(s):  
Seyed Mohammad Safieddin Ardebili ◽  
Teymor Tavakoli Hashjin ◽  
Barat Ghobadian ◽  
Gholamhasan Najafi ◽  
Stefano Mantegna ◽  
...  

AbstractThis work investigates the effect of simultaneous ultrasound-microwave irradiation on palm oil transesterification and uncovers optimal operating conditions. Response surface methodology (RSM) has been used to analyze the influence of reaction conditions, including methanol/palm oil molar ratio, catalyst concentration, reaction temperature and irradiation time on biodiesel yield. RSM analyses indicate 136 s and 129 s as the optimal sonication and microwave irradiation times, respectively. Optimized parameters for full conversion (97.53%) are 1.09% catalyst concentration and a 7:3.1 methanol/oil molar ratio at 58.4°C. Simultaneous ultrasound-microwave irradiation dramatically accelerates the palm oil transesterification reaction. Pure biodiesel was obtained after only 2.2 min while the conventional method requires about 1 h.


2019 ◽  
Vol 8 (1) ◽  
pp. 8-14 ◽  
Author(s):  
Seyed Mohammad Safieddin Ardebili ◽  
Xinyu Ge ◽  
Giancarlo Cravotto

Abstract The factors that influence microwave-assisted biodiesel production reactions have been analyzed in this investigation. The studied parameters included microwave (MW) power, irradiation time, and reactor pressure. The response surface method was used to optimize the reaction conditions. The conversion for the 6:1 methanol/oil molar ratio and 1% catalyst ranged from 68.4% to 96.71%. The optimized conditions were found to be 138 s of MW irradiation at 780 W and 7 bar pressure. The conversion at this point was 97.82%. Biodiesel yield increased at higher radiation times (90–130 s) and pressures (5–7 bar). Results show that MW power and irradiation time have significant effects at the 1% level, whereas pressure had significant effects at the 5% level on biodiesel production in this range. The major properties of the palm oil biodiesel produced herein have met the requirements of the EN 14214 methyl ester standard.


2017 ◽  
Vol 2 (1) ◽  
pp. 1-10 ◽  
Author(s):  
O. S. Aliozo ◽  
L. N. Emembolu ◽  
O. D. Onukwuli

Abstract In this research work, melon oil was used as feedstock for methyl ester production. The research was aimed at optimizing the reaction conditions for methyl ester yield from the oil. Response surface methodology (RSM), based on a five level, four variable central composite designs (CCD)was used to optimize and statistically analyze the interaction effect of the process parameter during the biodiesel production processes. A total of 30 experiments were conducted to study the effect of methanol to oil molar ratio, catalyst weight, temperature and reaction time. The optimal yield of biodiesel from melon oil was found to be 94.9% under the following reaction conditions: catalyst weight - 0.8%, methanol to oil molar ratio - 6:1, temperature - 55°C and reaction time of 60mins. The quality of methyl ester produced at these conditions was within the American Society for Testing and Materials (ASTM D6751) specification.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Nichaonn Chumuang ◽  
Vittaya Punsuvon

The present study was performed to optimize a heterogeneous calcium methoxide (Ca(OCH3)2) catalyzed transesterification process assisted with tetrahydrofuran (THF) as a cosolvent for biodiesel production from waste cooking oil. Response surface methodology (RSM) with a 5-level-4-factor central composite design was applied to investigate the effect of experimental factors on the percentage of fatty acid methyl ester (FAME) conversion. A quadratic model with an analysis of variance obtained from the RSM is suggested for the prediction of FAME conversion and reveals that 99.43% of the observed variation is explained by the model. The optimum conditions obtained from the RSM were 2.83 wt% of catalyst concentration, 11.6 : 1 methanol-to-oil molar ratio, 100.14 min of reaction time, and 8.65% v/v of THF in methanol concentration. Under these conditions, the properties of the produced biodiesel satisfied the standard requirement. THF as cosolvent successfully decreased the catalyst concentration, methanol-to-oil molar ratio, and reaction time when compared with biodiesel production without cosolvent. The results are encouraging for the application of Ca(OCH3)2 assisted with THF as a cosolvent for environmentally friendly and sustainable biodiesel production.


2015 ◽  
Vol 10 (2) ◽  
pp. 123-133 ◽  
Author(s):  
Mohammadreza Sabzimaleki ◽  
Barat Ghobadian ◽  
Mohsen Mazloom Farsibaf ◽  
Gholamhassan Najafi ◽  
Masoud Dehghani Soufi ◽  
...  

Abstract Production of biodiesel from castor oil (CO) using ultrasound-assisted has been investigated in this study. The objective of the present work was therefore to determine the relationship between various important parameters of the alkaline-catalyzed transesterification process to obtain a high reaction yield in a short time. The response surface methodology (RSM) was used to statistically analyze and optimize the operating parameters of the process. A central composite design (CCD) was approved to study the effects of the reaction time, the methanol to oil molar ratio, the ultrasonic cycle and the ultrasonic amplitude on reaction yield. The optimum conditions for alkaline-catalyzed transesterification of CO was found to be a reaction time of 540 s, methanol to oil molar ratio of 8.15:1,ultrasonic cycle of 0.73% and ultrasonic amplitude 64.34%. By exerting the calculated optimum condition in the process, the reaction yield reached 87.0494%. The results from the RSM analysis indicated that the reaction time has the most significant effect on the reaction yield.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2566 ◽  
Author(s):  
Mohammad Anwar ◽  
Mohammad Rasul ◽  
Nanjappa Ashwath ◽  
Md Rahman

In this study, the production process of second-generation biodiesel from Australian native stone fruit have been optimised using response surface methodology via an alkali catalysed transesterification process. This process optimisation was performed varying three factors, each at three different levels. Methanol: oil molar ratio, catalyst concentration (wt %) and reaction temperature were the input factors in the optimisation process, while biodiesel yield was the key model output. Both 3D surface plots and 2D contour plots were developed using MINITAB 18 to predict optimum biodiesel yield. Gas chromatography (GC) and Fourier transform infrared (FTIR) analysis of the resulting biodiesel was also done for biodiesel characterisation. To predict biodiesel yield a quadratic model was created and it showed an R2 of 0.98 indicating the satisfactory performance of the model. Maximum biodiesel yield of 95.8% was obtained at a methanol: oil molar ratio of 6:1, KOH catalyst concentration of 0.5 wt % and a reaction temperature of 55 °C. At these reaction conditions, the predicted biodiesel yield was 95.9%. These results demonstrate reliable prediction of the transesterification process by Response surface methodology (RSM). The results also show that the properties of the synthesised Australian native stone fruit biodiesel satisfactorily meet the ASTM D6751 and EN14214 standards. In addition, the fuel properties of Australian native stone fruit biodiesel were found to be similar to those of conventional diesel fuel. Thus, it can be said that Australian native stone fruit seed oil could be used as a potential second-generation biodiesel source as well as an alternative fuel in diesel engines.


Sign in / Sign up

Export Citation Format

Share Document