Optimization of Biodiesel Ultrasound-Assisted Synthesis from Castor Oil Using Response Surface Methodology (RSM)
Abstract Production of biodiesel from castor oil (CO) using ultrasound-assisted has been investigated in this study. The objective of the present work was therefore to determine the relationship between various important parameters of the alkaline-catalyzed transesterification process to obtain a high reaction yield in a short time. The response surface methodology (RSM) was used to statistically analyze and optimize the operating parameters of the process. A central composite design (CCD) was approved to study the effects of the reaction time, the methanol to oil molar ratio, the ultrasonic cycle and the ultrasonic amplitude on reaction yield. The optimum conditions for alkaline-catalyzed transesterification of CO was found to be a reaction time of 540 s, methanol to oil molar ratio of 8.15:1,ultrasonic cycle of 0.73% and ultrasonic amplitude 64.34%. By exerting the calculated optimum condition in the process, the reaction yield reached 87.0494%. The results from the RSM analysis indicated that the reaction time has the most significant effect on the reaction yield.