Effect of Ensilage of Rye Treated with Formic Acid and Lactic Acid Bacteria Inoculant on Ruminal Fermentation Characteristics

2020 ◽  
Vol 40 (4) ◽  
pp. 244-250
Author(s):  
Jayeon Kim ◽  
◽  
Rajaraman Bharanidharan ◽  
Geumhwi Bang ◽  
Soonwoo Jeong ◽  
...  
Author(s):  
C S Mayne

Recent research at this Institute has shown marked improvements in animal performance following the use of bacterial inoculants as silage additives (Gordon, 1989 and Mayne, 1990). Other studies with additives based on antimicrobial carboxylic salts (Maxgrass - BP Chemicals) have also shown large improvements in animal performance relative to untreated silage (Chamberlain et al, 1990). However with constraints on milk output in the form of milk quotas, it is important to investigate the potential “concentrate sparing” effect of these differing silage additives, whilst producing a constant yield of milk constituents.Five silages with a range of fermentation characteristics were produced by ensiling first regrowth herbage either untreated (C) or treated with four differing silage additives including: an inoculant of lactic acid bacteria (I); an inoculant of lactic acid bacteria plus enzymes (I+E); formic acid applied at 2.54 litres/t grass (FA) and antimicrobial carboxylic acids applied at 5.95 litres/t grass (CA).


2012 ◽  
Vol 58 (2) ◽  
pp. 73-78 ◽  
Author(s):  
Jiachen Fang ◽  
Masatoshi Matsuzaki ◽  
Hiroyuki Suzuki ◽  
Yimin Cai ◽  
Ken-ichi Horiguchi ◽  
...  

Author(s):  
P. O' Kiely

When grass with an adequate content of fermentable substrate and epiphytic lactic acid bacteria is ensiled properly, the fermentation which follows is normally considered satisfactory. This fermentation can be altered by various categories of additive such as acids, sugars and inoculants, each of which can influence the fermentation differently. The experiment reported compared the fermentation products, aerobic stability and animal performance for silages made using formic acid or a Lactobacillus plantarum inoculant with well preserved silage made without additive treatment.A 42 day regrowth of Lolium multiflorum (cv. Lemtal) was harvested without wilting using two precision - chop harvesters. Alternate loads of grass were ensiled with (a) no additive, (b) formic acid (850g/kg) at 3.0 1/t or (c)inoculant (Ecosyl - ICI plc) at 3 1/t (separate harvester). The inoculant was constituted immediately before use and was applied in accordance with the manufacturers instructions. Harvesting was completed and the silos sealed within 26 hours of mowing. The silos were opened after 113 days.


2021 ◽  
Vol 51 (3) ◽  
pp. 378-386
Author(s):  
B. Santoso ◽  
T.W. Widayati ◽  
B.T. Hariadi ◽  
M.N. Lekitoo

The research aimed at assessing the effects on nutrient digestion and ruminal fermentation by goats of a complete feed block (CFB) that incorporated agro-industrial by-products that were high in fibre and cellulolytic bacteria. Three Kacang goats, a native Indonesian breed, were used in a 3 × 3 Latin square experimental design with i) CFB without microbes (control), ii) CFB containing 1% Pseudomonas aeruginosa and 1% Acinetobacter baumannii, and iii) CFB containing 2% P. aeruginosa and 2% A. baumannii. Microbes in the CFBs consisted of lactic acid bacteria, yeast and cellulolytic bacteria that ranged from 106 to 108 cfu/g. The goats were fed each day at 08h00 and 16h00. The inclusion of P. aeruginosa and A. baumannii at 2% level reduced both neutral detergent fibre (NDF) and acid detergent fibre compared with other treatments. Goats fed on CFB with microbes had higher (P <0.01) digestibility of organic matter (OM) and NDF compared with control. The addition of P. aeruginosa and A. baumannii at 2% level increased (P <0.05) ruminal ammonia nitrogen (N-NH3), acetate, and total VFA. However, goats fed on CFB with microbes had lower (P <0.05) urinary N excretion, which improved (P <0.05) N retention compared with the control. It was concluded that a combination of lactic acid bacteria, yeast and cellulolytic bacteria in the CFB could modify fermentation in the rumen and increase the use of nitrogen in goats.


2008 ◽  
Vol 15 (3) ◽  
pp. 185 ◽  
Author(s):  
E. SAARISALO ◽  
T. JALAVA ◽  
E. SKYTTÄ

The efficiency of a novel strain of lactic acid bacteria inoculant (Lactobacillus plantarum VTT E-78076, E76) on the fermentation quality of wilted silage was studied. Furthermore, the possibility to improve aerobic stability of silages by combining an inoculant and chemical preservatives was investigated. Two experiments were conducted with wilted timothy-meadow fescue herbage (dry matter 429 and 344 g kg-1) using six treatments. In experiment I, E76 (106 cfu g-1 fresh matter (FM)) was applied alone and in combination with sodium benzoate (0.3 g kg-1 grass FM) or low rate of formic acid (0.4 l t-1 FM). In experiment II, E76 and a commercial inoculant were applied alone and in combination with sodium benzoate. Untreated silage and formic acid (4 l t-1 FM) treated silage served as negative and positive controls in both experiments. The effect of sodium benzoate and potassium sorbate in experiment I, on aerobic stability was tested by treating silages prior to aerobic stability measurements. The novel lactic acid bacteria inoculant was equally effective in improving fermentation quality as the commercial inoculant. However, the aerobic stability of both inoculated silages was poorer than that of formic acid treated or the untreated one in one of the experiments. The results suggested that antimicrobial properties of E76 were not effective enough to improve aerobic instability. One option to overcome this problem is to use chemical additives in combination with the inoculants.;


Sign in / Sign up

Export Citation Format

Share Document