scholarly journals Toxic Effects of Binary Mixtures of Heavy Metals on the Growth and P Removal Efficiencies of Alcaligenes sp.

2016 ◽  
Vol 35 (1) ◽  
pp. 79-86 ◽  
Author(s):  
Deok Hyun Kim ◽  
Jin Yoo ◽  
Keun Yook Chung
2010 ◽  
Vol 29 (2) ◽  
pp. 189-196 ◽  
Author(s):  
Hee-Jung Kim ◽  
Ri-Bi Yoo ◽  
Seok-Soon Han ◽  
Sun-Hee Woo ◽  
Moon-Soon Lee ◽  
...  

Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1160 ◽  
Author(s):  
Tadele Haile ◽  
Maria Fuerhacker

Stormwater runoff from roadways often contains a variety of contaminants such as heavy metals, which can adversely impact receiving waters. The filter media in stormwater filtration/infiltration systems play a significant role in the simultaneous removal of multiple pollutants. In this study, the capacity of five filter media—natural quartz sand (QS), sandy soil (SS) and three mineral-based technical filter media (TF-I, TF-II and TF-III)—to adsorb heavy metals (Cu, Pb and Zn) frequently detected in stormwater, as well as remobilization due to de-icing salt (NaCl), were evaluated in column experiments. The column breakthrough data were used to predict lifespan of the filter media. Column experiment operated under high hydraulic load showed that all technical filters and sandy soil achieved >97%, 94% and >80% of Pb, Cu and Zn load removals, respectively, while natural quartz sand (QS) showed very poor performance. Furthermore, treatment of synthetic stormwater by the soil and technical filter media met the requirements of the Austrian regulation regarding maximum effluent concentrations and minimum removal efficiencies for groundwater protection. The results showed that application of NaCl had only a minor impact on the remobilization of heavy metals from the soil and technical filter media, while the largest release of metals was observed from the QS column. Breakthrough analysis indicated that load removal efficiencies at column exhaustion (SS, TF-I, TF-II and TF-III) were >95% for Cu and Pb and 80–97% for Zn. Based on the adsorption capacities, filtration systems could be sized to 0.4 to 1% (TF-I, TF-II and TF-III) and 3.5% (SS) of their impervious catchment area and predicated lifespan of each filter media was at least 35, 36, 41 and 29 years for SS, TF-I, TF-II and TF-III, respectively. The findings of this study demonstrate that soil—based and technical filter media are effective in removing heavy metals and can be utilized in full-stormwater filtration systems.


2015 ◽  
Vol 3 (2) ◽  
pp. 345-355 ◽  
Author(s):  
Adnan Tutic ◽  
Srecko Novakovic ◽  
Mitar Lutovac ◽  
Rade Biocanin ◽  
Sonja Ketin ◽  
...  

The metal is a chemical element that conducts electricity well and heat, and the nonferrous metals builds cations and ionic bonds. Heavy metals include metals whose density is higher than 5 g/cm3. The whole range of the metal is in the form of essential trace elements, essential for a number of functions in the human body, and its deficiency results in a lack of occurrence of a serious symptom. The best examples are anemia lack of iron, lack of chromium in diabetes, growth problems in lack of nickel. Other elements such as lead, cadmium, mercury, arsenic and molybdenum have been shown to exhibit large quantities of toxic effects. The paper examines the problem of heavy metals originating from agriculture on agroecosystems. This group of pollutants is considered the most important cause of degradation of soil quality, surface and groundwater and direct causal adverse effects on human and animal health. In order to complete the environmental monitoring of pollutants, these main categories, origins, and possible negative impacts of the basic principles of preventing their toxic effects were examined.


2020 ◽  
Vol 36 (10) ◽  
pp. 816-822
Author(s):  
Preeti Singh ◽  
Prasenjit Mitra ◽  
Taru Goyal ◽  
Pilla VSN Kiran Kumar ◽  
Shailja Sharma ◽  
...  

Metallothioneins (MTs) are low molecular weight cysteine-rich, metal-binding proteins. They are involved in transportation and detoxification of heavy metals, homeostasis of essential metals, and as antioxidation against reactive oxygen species. Polymorphisms in a gene may increase or decrease the expression efficiency of a gene. This study aimed to determine the genetic effect of MT1A rs8052394 on lead (Pb), cadmium (Cd), zinc (Zn), and aluminum (Al) levels in factory workers. The study included 100 occupationally heavy metal exposed workers from different factories around Jodhpur. Pb, Cd, Zn, and Al levels were measured by atomic absorption spectrophotometry. Individuals with the GG genotype had lower Pb, Zn, and Al levels and higher Cd levels than AA and AG genotypes. The genotyping of MT1A rs8052394 was done by the polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP). The mean ± standard deviation of Pb, Cd, Zn, and Al was 5.88 ± 13.28 µg/dL, 3.52 ± 1.25 µg/L, 16.45 ± 16.69 µg/dL, and 58.92 ± 58.91 µg/L, respectively. A significant association was found between single-nucleotide polymorphisms (SNPs) of MT1A gene and Cd ( p = 0.006) and with Zn levels ( p = 0.031) but no association found with Pb and Al levels. Among the study population, 78 participants were homozygote major (AA), 19 were heterozygote (AG), and 3 were homozygote minor (GG). The χ 2 test presented the genotypic distribution of all three genotypes under the Hardy–Weinberg equilibrium ( p > 0.05). The frequency of the A allele was 87.5% (175) and the G allele was 12.5% (25). To conclude, polymorphism in rs8052394 of the MT1A gene is associated with increased metal accumulation which in turn may lead to increased toxic effects in the exposed individuals. Factory workers thus, should be more cautious about protecting their health against the toxic effects of heavy metals.


Chemosphere ◽  
2019 ◽  
Vol 223 ◽  
pp. 686-693 ◽  
Author(s):  
Chukwuebuka ThankGod Eze ◽  
Francesco Michelangeli ◽  
Adebayo Akeem Otitoloju

2009 ◽  
Vol 59 (1) ◽  
pp. 175-183 ◽  
Author(s):  
Abdellah Rababah ◽  
Ahmad Al-Shuha

This paper investigates the capacity of Nutrient Film Technique (NFT) to control effluent's heavy metals discharge. A commercial hydroponic system was adapted to irrigate lettuces with primary treated wastewater for studying the potential heavy metals removal. A second commercial hydroponic system was used to irrigate the same type of lettuces with nutrient solution and this system was used as a control. Results showed that lettuces grew well when irrigated with primary treated effluent in the commercial hydroponic system. The NFT-plant system heavy metals removal efficiency varied amongst the different elements, The system's removal efficiency for Cr was more than 92%, Ni more than 85%, in addition to more than 60% reduction of B, Pb, and Zn. Nonetheless, the NFT-plants system removal efficiencies for As, Cd and Cu were lower than 30%. Results show that lettuces accumulated heavy metals in leaves at concentrations higher than the maximum acceptable European and Australian levels. Therefore, non-edible plants such as flowers or pyrethrum are recommended as value added crops for the proposed NFT.


Sign in / Sign up

Export Citation Format

Share Document