scholarly journals Simultaneous Adsorption of Heavy Metals from Roadway Stormwater Runoff Using Different Filter Media in Column Studies

Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1160 ◽  
Author(s):  
Tadele Haile ◽  
Maria Fuerhacker

Stormwater runoff from roadways often contains a variety of contaminants such as heavy metals, which can adversely impact receiving waters. The filter media in stormwater filtration/infiltration systems play a significant role in the simultaneous removal of multiple pollutants. In this study, the capacity of five filter media—natural quartz sand (QS), sandy soil (SS) and three mineral-based technical filter media (TF-I, TF-II and TF-III)—to adsorb heavy metals (Cu, Pb and Zn) frequently detected in stormwater, as well as remobilization due to de-icing salt (NaCl), were evaluated in column experiments. The column breakthrough data were used to predict lifespan of the filter media. Column experiment operated under high hydraulic load showed that all technical filters and sandy soil achieved >97%, 94% and >80% of Pb, Cu and Zn load removals, respectively, while natural quartz sand (QS) showed very poor performance. Furthermore, treatment of synthetic stormwater by the soil and technical filter media met the requirements of the Austrian regulation regarding maximum effluent concentrations and minimum removal efficiencies for groundwater protection. The results showed that application of NaCl had only a minor impact on the remobilization of heavy metals from the soil and technical filter media, while the largest release of metals was observed from the QS column. Breakthrough analysis indicated that load removal efficiencies at column exhaustion (SS, TF-I, TF-II and TF-III) were >95% for Cu and Pb and 80–97% for Zn. Based on the adsorption capacities, filtration systems could be sized to 0.4 to 1% (TF-I, TF-II and TF-III) and 3.5% (SS) of their impervious catchment area and predicated lifespan of each filter media was at least 35, 36, 41 and 29 years for SS, TF-I, TF-II and TF-III, respectively. The findings of this study demonstrate that soil—based and technical filter media are effective in removing heavy metals and can be utilized in full-stormwater filtration systems.

2016 ◽  
Vol 73 (12) ◽  
pp. 2921-2928 ◽  
Author(s):  
Marla C. Maniquiz-Redillas ◽  
Lee-Hyung Kim

Abstract In this research, an infiltration trench equipped with an extensive pretreatment and filter bed consisting of woodchip, sand and gravel was utilized as a low impact development technique to manage stormwater runoff from a highly impervious road with particular emphasis on heavy metal removal. Findings revealed that the major factors influencing the removal of heavy metals were the concentration of the particulate matters and heavy metals in runoff, runoff volume and flow rates. The reduction of heavy metals was enhanced by sedimentation of particulates through pretreatment. Fine particles (<2 mm) had the most significant amount of heavy metals, thus, enhanced adsorption and filtration using various filter media were important design considerations. Sediment was most highly attached on the surface area of woodchip than to other filter media like sand, gravel and geotextile. It is suggested that maintenance must be performed after the end of the winter season wherein high sediment rate was observed to maintain the efficiency of the treatment system.


2006 ◽  
Vol 510-511 ◽  
pp. 918-921 ◽  
Author(s):  
Ree Ho Kim ◽  
Sang Ho Lee ◽  
Jinwoo Jeong ◽  
Chae Sung Gee

The pollutants in urban stormwater runoff, which lead to non-point source contamination of water environment around cities, are of great concern. Lignocellulose fiber filters have potential to treat urban stormwater runoff because they are cheap and environmentally friendly, and can effectively remove particulate pollutants. However, the fiber filters alone cannot sufficiently remove soluble pollutants including heavy metals, nitrogen compounds, and phosphate. In this study, techniques for chemical modification of lignocellulose fiber filter were implemented to enhance the treatment efficiency of soluble pollutants in urban stormwater runoff. Using these chemically modified fiber filters together with polymer filter media, a new treatment device was examined to control the pollutants in first flush of stormwater. The results indicated that the filters incorporated into the treatment unit allow the control of urban stormwater runoff with minimal cost and high efficiency.


2021 ◽  
Vol 13 (15) ◽  
pp. 8552
Author(s):  
Vahid Alimohammadi ◽  
Mehdi Maghfouri ◽  
Delaram Nourmohammadi ◽  
Pejman Azarsa ◽  
Rishi Gupta ◽  
...  

Clean water is a vital need for all living creatures during their lifespan. However, contaminated stormwater is a major issue around the globe. A wide range of contaminants, including heavy metals, organic and inorganic impurities, has been discovered in stormwater. Some commonly utilized methods, such as biological, physical and chemical procedures, have been considered to overcome these issues. However, these current approaches result in moderate to low contaminant removal efficiencies for certain classes of contaminants. Of late, filtration and adsorption processes have become more featured in permeable concretes (PCs) for the treatment of stormwater. As nanoparticles have vast potential and unique characterizations, such as a higher surface area to cure polluted stormwater, employing them to improve permeable concretes’ capabilities in stormwater treatment systems is an effective way to increase filtration and adsorption mechanisms. The present study reviews the removal rate of different stormwater contaminants such as heavy metals, organic and other pollutants using nanoparticle-improved PC. The application of different kinds of nanomaterials in PC as porous media to investigate their influences on the properties of PC, including the permeability rate, compressive strength, adsorption capacity and mix design of such concrete, was also studied. The findings of this review show that different types of nanomaterials improve the removal efficiency, compressive strength and adsorption capacity and decrease the infiltration rate of PC during the stormwater treatment process. With regard to the lack of comprehensive investigation concerning the use of nanomaterials in PC to treat polluted stormwater runoff, this study reviews 242 published articles on the removal rate of different stormwater contaminants by using PC improved with nanoparticles.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1312
Author(s):  
Daniel Wicke ◽  
Andreas Matzinger ◽  
Hauke Sonnenberg ◽  
Nicolas Caradot ◽  
Rabea-Luisa Schubert ◽  
...  

The main aim of this study was a survey of micropollutants in stormwater runoff of Berlin (Germany) and its dependence on land-use types. In a one-year monitoring program, event mean concentrations were measured for a set of 106 parameters, including 85 organic micropollutants (e.g., flame retardants, phthalates, pesticides/biocides, polycyclic aromatic hydrocarbons (PAH)), heavy metals and standard parameters. Monitoring points were selected in five catchments of different urban land-use types, and at one urban river. We detected 77 of the 106 parameters at least once in stormwater runoff of the investigated catchment types. On average, stormwater runoff contained a mix of 24 µg L−1 organic micropollutants and 1.3 mg L−1 heavy metals. For organic micropollutants, concentrations were highest in all catchments for the plasticizer diisodecyl phthalate. Concentrations of all but five parameters showed significant differences among the five land-use types. While major roads were the dominant source of traffic-related substances such as PAH, each of the other land-use types showed the highest concentrations for some substances (e.g., flame retardants in commercial area, pesticides in catchment dominated by one family homes). Comparison with environmental quality standards (EQS) for surface waters shows that 13 micropollutants in stormwater runoff and 8 micropollutants in the receiving river exceeded German quality standards for receiving surface waters during storm events, highlighting the relevance of stormwater inputs for urban surface waters.


Author(s):  
Norwardatun Abd Roni ◽  
◽  
Suraya Hani Adnan ◽  
Nuramidah Hamidon ◽  
Tuan Noor Hasanah Tuan Ismail ◽  
...  

The high levels of phosphorus (P) removal occurring through human activities contributes to Eutrophication. Therefore, it is important to understand the quantity of P flows of the different filter materials. This paper provides an overview on the different filter media used for P removal from wastewater also the conventional wastewater treatment system for phosphorus removal. The filter materials consist of natural materials, industrial by-products and man-made products. Most filters have been investigated in batch and column studies in laboratory. The results from these overview vary for every filters and recycled concrete aggregates (RCA) have demonstrated promising properties with regard to P removal capacity. The chemical composition of the adsorption media is a critical factor. Because phosphorus is removed via sorption and precipitation processes, Calcium (Ca), Iron (Fe) and Aluminium (Al) content is important in efficient P removal. Thus filter media should be selected very carefully. In such systems, appropriate pre-treatment will also allow for a longer lifetime of the filter media, by decreasing the risk of clogging and allowing one to use finer reactive filter media with higher sorption capacity. The usage of these alternatives filters materials will ease the environmental problems that are currently perceived globally.


Sign in / Sign up

Export Citation Format

Share Document