scholarly journals Corrosion Protection of Steel by Applying a Zn-Sn Metal Spray System

2014 ◽  
Vol 14 (6) ◽  
pp. 505-513 ◽  
Author(s):  
Hwa-Sung Ryu ◽  
Dong-Geun Jeong ◽  
Han-Seung Lee
2008 ◽  
Vol 385-387 ◽  
pp. 665-668
Author(s):  
Man Hae Han ◽  
Han Seung Lee

Cathodic Protection Method was introduced as a corrosion protection method of metals under the ground or sea. Since 1970, it was applied to corrosion protection method of reinforced concrete structures. After 1990, this method has been used around the world, and its usability was proved. But this method has some problems on the aspect of construction and economy. In order to solve these problems, Cathodic Protection Method by using high durable metal spray was developed. First, the specimen was covered with anodic materials (Zn, Al) by using metal spray. And a performance of corrosion protection was confirmed by measuring corrosion current and halfcell potential of specimen. Through the result of experiment, it is possible to know that Cathodic Protection Method by using high metal spray is good protect to corrosion on reinforced concrete structures.


2001 ◽  
Vol 11 (PR3) ◽  
pp. Pr3-861-Pr3-867 ◽  
Author(s):  
S. M. Zemskova ◽  
J. A. Haynes ◽  
K. M. Cooley

2020 ◽  
Vol 117 (6) ◽  
pp. 610
Author(s):  
Nadia Hammouda ◽  
Kamel Belmokre

Organic coatings are widely employed in the corrosion protection of most metal surfaces, particularly steel. They provide a barrier against corrosive species present in the environment, due to their high resistance to oxygen, water and ions transport. This study focuses on the evaluation of corrosion protection performance of epoxy paint on the carbon steel surface in chloride environment (3% NaCl) by Electrochemical Impedance Spectroscopy (EIS). The electrochemical behavior of painted surface was estimated by EIS parameters that contained paint film resistance, paint film capacitance and double layer capacitance. On the basis of calculation using EIS spectrums it was observed that pore resistance (Rpore) decreased with the appearance of doubled layer capacitance (Cdl) due to the electrolyte penetration through the film. This was further confirmed by the decrease of diffusion resistance (Rd) which was also the indicator of the deterioration of paint film protectiveness. Microscopic analyses have shown that oxidation dominates the corroded surfaces.


Author(s):  
M Pal

The marine environment is hostile to most engineering materials, a combination of in-service wear and exposure to marine environment leads to an accelerated material degradation.  Insufficient or poor protection of the substrates further assists the accelerated material degradation in marine environment. There is a direct relationship between the material-state of a ship and its operational capability, readiness, and service life.  The current state-of-the-art practice is to use paint-based coatings to maintain the material-state of ships.  However, the protection offered by paint coatings is usually brief due to inherent permeability and low damage tolerance of these coatings.  For this reason, the paint coatings require renewal at regular intervals, typically less than 5-years, to maintain a minimum level of protection from the marine environment.  The need for regular painting of ships results in a significant negative impact on the through-life availability, operational capability/readiness, and the cost of maintenance/operation of naval ships.  Therefore, the fleet owners and operators should look beyond the conventional paint-based coatings to achieve significant breakthrough improvements in maintaining and enhancing the material-state of naval ships. Metallic coatings, if selected and applied appropriately, will outperform the paint coatings in the marine environment.  Historically, the cost and performance of metallic coatings, mainly thermal metal spray (TMS) coatings, prevented their widespread use in the marine industry.  The TMS coatings also have their own inherent application and performance related limitations that are widely reported in the literature.  However, the cold metal spray (CMS) coating process can overcome the application and performance related limitations that are typically associated with the TMS coatings, therefore creating an opportunity for widespread use of metallic coatings in shipbuilding and fleet upkeep/maintenance. In this paper, the ability of low-pressure (LP-CMS) coatings to repair and reclaim damaged marine components, and application of functional coatings to improve in-service damage tolerance of the damaged/new components is investigated.  The results of the investigation show that two LP-CMS coatings, Al-alloy and CuZn-alloy, can be used to repair and preserve both new and damaged components.  The accelerated salt-spray and natural immersion corrosion testing of the LP-CMS coatings showed that each coating will be better suited to a particular operational environment, i.e. CuZn-alloy coating performed well in both immersion and atmospheric corrosion environments, whereas Al-alloy coating performed well only in atmospheric corrosion environment. 


Alloy Digest ◽  
2007 ◽  
Vol 56 (4) ◽  

Abstract AK Steel 409 Ultra Form was created for applications needing oxidation or corrosion protection beyond the capability of carbon steel and some coated steels. AK Steel 409 Ultra Form is more formable than standard Type 409 stainless steel and is particularly suitable for parts requiring more complex shapes and improved weldability. Examples of applications include automotive exhaust tubing and stampings. This datasheet provides information on physical properties, hardness, elasticity, and tensile properties as well as deformation. It also includes information on high temperature performance as well as forming and joining. Filing Code: SS-990. Producer or source: AK Steel, Butler Operations.


Sign in / Sign up

Export Citation Format

Share Document