Statistical analysis in genetic imprinting on the X chromosome and DNA forensics

Author(s):  
Kexin Yu
2002 ◽  
Vol 79 (2) ◽  
pp. 119-127 ◽  
Author(s):  
DINAH F. HALES ◽  
MATHEW A. SLOANE ◽  
ALEX C. C. WILSON ◽  
PAUL SUNNUCKS

Most aphids are cyclic parthenogens, so are ideal models in studies of the mechanisms and consequences of sex and recombination. However, owing to a shortage of physical and genetic markers, there have been few studies of the most fundamental genetic processes in these organisms. For example, it is not known whether autosomal segregation during male spermatogenesis is in Mendelian proportions: we address that question here. The aphid Myzus persicae has a typical karyotype of 2n = 12 in females (XX), while males are XO (2n = 11). During male meiosis, only the spermatocytes with an X chromosome are viable. We hypothesized that assortment of autosomes might be non-random because chromosomal imprinting leading to elimination of the paternal autosomes is seen in the closely related coccoids. In other aphid models, we have observed segregation distortions at single microsatellite loci (Wilson, 2000). Such distortions may have nothing to do with ‘selfish’ behaviour, but may be caused by mutation accumulation causing fitness differentials. Thus single-locus distortions might be predicted to be more likely to be detected via the male lines of clones that have lost the ability to reproduce sexually (male-producing obligate parthenogenesis (androcyclic)). Using microsatellites we show that genetic imprinting or selfish autosome behaviour does not occur in male M. persicae. Generally, loci segregated in Mendelian proportions in both sexes of cyclically parthenogenetic (holocyclic) clones. However, in androcyclic clones, segregation distortions consistently involved the same two autosomes. This is consistent with linkage of markers to deleterious mutations associated with a loss of sexual reproduction.


1996 ◽  
Vol 45 (1-2) ◽  
pp. 85-85
Author(s):  
M.F. Lyon

In contrast to the random inactivation of either maternal or paternal X-chromosome in the somatic cells of eutherian mammals, in marsupials the paternal X-chromosome is preferentially inactivated in all cells. Similar exclusively paternal X-inactivation occurs in two extraembryonic cell lineages of mice and rats. Thus, genetic imprinting is an important feature of X-inactivation. In embryonic development the initiation of X-inactivation is thought to occur through the X-inactivation centre, located on the X-Chromosome, and thus imprinting probably acts through this centre. A candidate gene for a role in the inactivation centre is Xist (X inactive specific transcript) which is expressed only from the inactive X-Chromosome. The expression of Xist in the mouse embryo is appropriate for it to be a cause rather than a consequence of inactivation. It appears before inactivation, and only the paternal allele is expressed in the extraembryonic lineages. In the germ cells also changes in X-chromosome activity are accompanied by changes in Xist expression. Studies of methylation of the Xist gene have shown that in male tissues where Xist is not active it is fully methylated, whereas in the female the allele on the active X-chromosome only is methylated. In male germ cells, where Xist is expressed, it is demethylated and the demethylation persists in mature spermatozoa. Thus a methylation difference in germ cells could possibly be the imprint. In androgenotes, with paternally derived chromosomes, Xist is expressed at the 4-cell stage, whereas in gynogenotes and parthenogenotes expression does not appear until the blastocyst stage. Thus, Xist expression shows imprinting. When expression appears in parthenogenotes it is random, suggesting that the imprint has been lost. The Xist gene has no open reading frame and is thought to act through mRNA but its function is unknown.


2010 ◽  
Vol 10 ◽  
pp. 1749-1767 ◽  
Author(s):  
Roberto Piergentili

The X and Y chromosomes ofDrosophila melanogasterwere the first examples of chromosomes associated with genetic information. Thanks to the serendipitous discovery of a male with white eyes in 1910, T.H. Morgan was able to associate the X chromosome of the fruit fly with a phenotypic character (the eye color) for the first time. A few years later, his student, C.B. Bridges, demonstrated that X0 males, although phenotypically normal, are completely sterile. This means that the X chromosome, like the autosomes, harbors genes that control several phenotypic traits, while the Y chromosome is important for male fertility only. Notwithstanding its long history – almost 100 years in terms of genetic studies – most of the features of the Y chromosome are still a mystery. This is due to the intrinsic nature of this genetic element, namely, (1) its molecular composition (mainly transposable elements and satellite DNA), (2) its genetic inertia (lack of recombination due to its heterochromatic nature), (3) the absence of homology with the X (with the only exception of the nucleolar organizer), (4) the lack of visible phenotypes when it is missing (indeed, except for their sterility, X0 flies are normal males), and (5) its low density as for protein-coding sequences (to date, only 13 genes out of approximately 14,000 have been mapped on this chromosome inD. melanogaster, i.e., ~0.1% of the total). Nonetheless, a more accurate analysis reveals that this chromosome can influence several complex phenotypes: (1) it has a role in the fertility of both sexes and viability of males when over-represented; (2) it can unbalance the intracellular nucleotide pool; (3) it can interfere with the gene expression either by recruiting proteins involved in chromatin remodeling (PEV) or, to a higher extent, by influencing the expression of up to 1,000 different genes, probably by changing the availability of transcription factors; (4) it plays a major role (up to 50%) in the resistance to heat-induced male sterility; (5) it affects the behavior; and (6) it plays a role in genetic imprinting. In the present paper, all these Y-related phenotypes are described and a potential similarity with the human Y chromosome is drawn.


2019 ◽  
Vol 29 ◽  
pp. S58
Author(s):  
Stacey Winham ◽  
William Jons ◽  
Colin Colby ◽  
Susan McElroy ◽  
Mark Frye ◽  
...  

1966 ◽  
Vol 24 ◽  
pp. 188-189
Author(s):  
T. J. Deeming

If we make a set of measurements, such as narrow-band or multicolour photo-electric measurements, which are designed to improve a scheme of classification, and in particular if they are designed to extend the number of dimensions of classification, i.e. the number of classification parameters, then some important problems of analytical procedure arise. First, it is important not to reproduce the errors of the classification scheme which we are trying to improve. Second, when trying to extend the number of dimensions of classification we have little or nothing with which to test the validity of the new parameters.Problems similar to these have occurred in other areas of scientific research (notably psychology and education) and the branch of Statistics called Multivariate Analysis has been developed to deal with them. The techniques of this subject are largely unknown to astronomers, but, if carefully applied, they should at the very least ensure that the astronomer gets the maximum amount of information out of his data and does not waste his time looking for information which is not there. More optimistically, these techniques are potentially capable of indicating the number of classification parameters necessary and giving specific formulas for computing them, as well as pinpointing those particular measurements which are most crucial for determining the classification parameters.


Author(s):  
Gianluigi Botton ◽  
Gilles L'espérance

As interest for parallel EELS spectrum imaging grows in laboratories equipped with commercial spectrometers, different approaches were used in recent years by a few research groups in the development of the technique of spectrum imaging as reported in the literature. Either by controlling, with a personal computer both the microsope and the spectrometer or using more powerful workstations interfaced to conventional multichannel analysers with commercially available programs to control the microscope and the spectrometer, spectrum images can now be obtained. Work on the limits of the technique, in terms of the quantitative performance was reported, however, by the present author where a systematic study of artifacts detection limits, statistical errors as a function of desired spatial resolution and range of chemical elements to be studied in a map was carried out The aim of the present paper is to show an application of quantitative parallel EELS spectrum imaging where statistical analysis is performed at each pixel and interpretation is carried out using criteria established from the statistical analysis and variations in composition are analyzed with the help of information retreived from t/γ maps so that artifacts are avoided.


Sign in / Sign up

Export Citation Format

Share Document