A critical evaluation on the impact to urban thermal environment by application of vertical greening to high-rise buildings in high-density cities

Author(s):  
Xiaoyi Zhu
2019 ◽  
Vol 11 (8) ◽  
pp. 959 ◽  
Author(s):  
Yanwei Sun ◽  
Chao Gao ◽  
Jialin Li ◽  
Run Wang ◽  
Jian Liu

It is widely acknowledged that urban form significantly affects urban thermal environment, which is a key element to adapt and mitigate extreme high temperature weather in high-density urban areas. However, few studies have discussed the impact of physical urban form features on the land surface temperature (LST) from a perspective of comprehensive urban spatial structures. This study used the ordinary least-squares regression (OLS) and random forest regression (RF) to distinguish the relative contributions of urban form metrics on LST at three observation scales. Results of this study indicate that more than 90% of the LST variations were explained by selected urban form metrics using RF. Effects of the magnitude and direction of urban form metrics on LST varied with the changes of seasons and observation scales. Overall, building morphology and urban ecological infrastructure had dominant effects on LST variations in high-density urban centers. Urban green space and water bodies demonstrated stronger cooling effects, especially in summer. Building density (BD) exhibited significant positive effects on LST, whereas the floor area ratio (FAR) showed a negative influence on LST. The results can be applied to investigate and implement urban thermal environment mitigation planning for city managers and planners.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0247786
Author(s):  
Meiya Wang ◽  
Hanqiu Xu

The quantitative relationship between the spatial variation of building’s height and the associated land surface temperature (LST) change in six Chinese megacities is investigated in this paper. The six cities involved are Beijing, Shanghai, Tianjin, Chongqing, Guangzhou, and Shenzhen. Based on both remote sensing and building footprint data, we retrieved the LST using a single-channel (SC) algorithm and evaluate the heating/cooling effect caused by building-height difference via correlation analysis. The results show that the spatial distribution of high-rise buildings is mainly concentrated in the center business districts, riverside zones, and newly built-up areas of the six megacities. In the urban area, the number and the floor-area ratio of high to super high-rise buildings (>24m) account for over 5% and 4.74%, respectively. Being highly urbanized cities, most of urban areas in the six megacities are associated with high LST. Ninety-nine percent of the city areas of Shanghai, Beijing, Chongqing, Guangzhou, Shenzhen, and Tianjin are covered by the LST in the range of 30.2~67.8°C, 34.8~50.4°C, 25.3~48.3°C, 29.9~47.2°C, 27.4~43.4°C, and 33.0~48.0°C, respectively. Building’s height and LST have a negative logarithmic correlation with the correlation coefficients ranging from -0.701 to -0.853. In the building’s height within range of 0~66m, the LST will decrease significantly with the increase of building’s height. This indicates that the increase of building’s height will bring a significant cooling effect in this height range. When the building’s height exceeds 66m, its effect on LST will be greatly weakened. This is due to the influence of building shadows, local wind disturbances, and the layout of buildings.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1159
Author(s):  
Igor Žiberna ◽  
Nataša Pipenbaher ◽  
Daša Donša ◽  
Sonja Škornik ◽  
Mitja Kaligarič ◽  
...  

The human population is increasing. The ongoing urbanization process, in conjunction with climate change, is causing larger environmental footprints. Consequently, quality of life in urban systems worldwide is under immense pressure. Here, the seasonal characteristics of Maribor’s urban thermal environment were studied from the perspectives of surface urban heat island (SUHI) and urban heat island (UHI) A remote sensing thermal imagery time series and in-situ measurements (stationary and mobile) were combined with select geospatial predictor variables to model this atmospheric phenomenon in its most intensive season (summer). Finally, CMIP6 climate change scenarios and models were considered, to predict future UHI intensity. Results indicate that Maribor’s UHI intensity maximum shifted from winter to spring and summer. The implemented generalized additive model (GAM) underestimates UHI intensity in some built-up parts of the study area and overestimates UHI intensity in green vegetated areas. However, by the end of the century, UHI magnitude could increase by more than 60% in the southern industrial part of the city. Such studies are of particular concern, in regards to the increasing frequency of heat waves due to climate change, which further increases the (already present) heat stress in cities across the globe.


2021 ◽  
Author(s):  
Shiloh Lazar

The functionalism and reductivism behind post war modernist high-rise housing typologies like the slab block, failed to understand the impact of this highly condensed circulation on the social interactions of residents. Contemporary high-rise architecture typologies like the point tower still don’t account for the complex social needs of inhabitants - providing isolated group activity spaces in lieu of addressing and elaborating the shape and form of the transitional spaces between the street and the unit door. This thesis asserts that understanding the complexity of social needs and normative social behavioral patterns will inform an approach to design that will allow for a more humane and socially interactive environment. This thesis design explores Systems Theory, Pattern Language, recent precedents and tactics like clustering, layered gradients of privacy, visual buffering, transparency, texture and materiality in a high-density residential design for Toronto’s rapidly intensifying core.


2021 ◽  
Author(s):  
Shiloh Lazar

The functionalism and reductivism behind post war modernist high-rise housing typologies like the slab block, failed to understand the impact of this highly condensed circulation on the social interactions of residents. Contemporary high-rise architecture typologies like the point tower still don’t account for the complex social needs of inhabitants - providing isolated group activity spaces in lieu of addressing and elaborating the shape and form of the transitional spaces between the street and the unit door. This thesis asserts that understanding the complexity of social needs and normative social behavioral patterns will inform an approach to design that will allow for a more humane and socially interactive environment. This thesis design explores Systems Theory, Pattern Language, recent precedents and tactics like clustering, layered gradients of privacy, visual buffering, transparency, texture and materiality in a high-density residential design for Toronto’s rapidly intensifying core.


Sign in / Sign up

Export Citation Format

Share Document