scholarly journals Quantifying the Effects of Urban Form on Land Surface Temperature in Subtropical High-Density Urban Areas Using Machine Learning

2019 ◽  
Vol 11 (8) ◽  
pp. 959 ◽  
Author(s):  
Yanwei Sun ◽  
Chao Gao ◽  
Jialin Li ◽  
Run Wang ◽  
Jian Liu

It is widely acknowledged that urban form significantly affects urban thermal environment, which is a key element to adapt and mitigate extreme high temperature weather in high-density urban areas. However, few studies have discussed the impact of physical urban form features on the land surface temperature (LST) from a perspective of comprehensive urban spatial structures. This study used the ordinary least-squares regression (OLS) and random forest regression (RF) to distinguish the relative contributions of urban form metrics on LST at three observation scales. Results of this study indicate that more than 90% of the LST variations were explained by selected urban form metrics using RF. Effects of the magnitude and direction of urban form metrics on LST varied with the changes of seasons and observation scales. Overall, building morphology and urban ecological infrastructure had dominant effects on LST variations in high-density urban centers. Urban green space and water bodies demonstrated stronger cooling effects, especially in summer. Building density (BD) exhibited significant positive effects on LST, whereas the floor area ratio (FAR) showed a negative influence on LST. The results can be applied to investigate and implement urban thermal environment mitigation planning for city managers and planners.

2021 ◽  
Vol 10 (12) ◽  
pp. 809
Author(s):  
Jing Sun ◽  
Suwit Ongsomwang

Land surface temperature (LST) is an essential parameter in the climate system whose dynamics indicate climate change. This study aimed to assess the impact of multitemporal land use and land cover (LULC) change on LST due to urbanization in Hefei City, Anhui Province, China. The research methodology consisted of four main components: Landsat data collection and preparation; multitemporal LULC classification; time-series LST dataset reconstruction; and impact of multitemporal LULC change on LST. The results revealed that urban and built-up land continuously increased from 2.05% in 2001 to 13.25% in 2020. Regarding the impact of LULC change on LST, the spatial analysis demonstrated that the LST difference between urban and non-urban areas had been 1.52 K, 3.38 K, 2.88 K and 3.57 K in 2001, 2006, 2014 and 2020, respectively. Meanwhile, according to decomposition analysis, regarding the influence of LULC change on LST, the urban and built-up land had an intra-annual amplitude of 20.42 K higher than other types. Thus, it can be reconfirmed that land use and land cover changes due to urbanization in Hefei City impact the land surface temperature.


2020 ◽  
Author(s):  
Zheng Guo ◽  
Miaomiao Cheng

<p>Diurnal temperature range (includes land surface temperature diurnal range and near surface air temperature diurnal range) is an important meteorological parameter, which is a very important factor in the field of the urban thermal environmental. Nowadays, the research of urban thermal environment mainly focused on surface heat island and canopy heat island.</p><p>Based on analysis of the current status of city thermal environment. Firstly, a method was proposed to obtain near surface air temperature diurnal range in this study, difference of land surface temperature between day and night were introduced into the improved temperature vegetation index feature space based on remote sensing data. Secondly, compared with the district administrative division, we analyzed the spatial and temporal distribution characteristics of the diurnal range of land surface temperature and near surface air temperature.</p><p>The conclusions of this study are as follows:</p><p>1 During 2003-2012s, the land surface temperature and near surface air temperature diurnal range of Beijing were fluctuating upward. The rising trend of the near surface air temperature diurnal range was more significant than land surface temperature diurnal range. In addition, the rise and decline of land surface temperature and near surface air temperature diurnal range in different districts were different. In the six city districts, the land surface temperature and near surface air temperature diurnal range in the six areas of the city were mainly downward. The decline trend of near surface air temperature diurnal range was more significant than land surface temperature diurnal range.</p><p>2 During 2003-2012s, the land surface temperature and near surface air temperature diurnal range of Beijing with similar characteristics in spatial distribution, with higher distribution land surface temperature and near surface air temperature diurnal range in urban area and with lower distribution of land surface temperature and near surface air temperature diurnal range in the Northwest Mountainous area and the area of Miyun reservoir.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Caiyan Wu ◽  
Junxiang Li ◽  
Chunfang Wang ◽  
Conghe Song ◽  
Dagmar Haase ◽  
...  

Recently, pocket green spaces (PGS), i.e., small green spaces, have attracted growing attention for their various ecological and social services. As a crucial part of urban green spaces in high-density urban areas, PGS facilitates recreation and relaxation for neighborhoods and thus improves the livability of cities at the local scale. However, whether and how the PGS cools the urban heat island effect is still unclear. This research was performed in the highly developed areas of the city of Shanghai during hot summer daytime. We applied a set of cooling effect indicators to estimate the cooling extent, cooling intensity, and cooling efficiency of PGS. We further examined whether and how landscape features within and surrounding the PGS influence its cooling effects. The results showed that 90% of PGS are cooler than their surroundings. Among the landscape features, the land surface temperature of PGS logarithmically decreased with its area, and the maximum local cool island intensity and maximum cooling area logarithmically increased with the area of PGS. The vegetation types and their composition within the PGS also influenced their surface temperature and the cooling effect. The PGS dominated by tree-shrub-grass showed the highest cooling efficiency. The surrounding landscape patterns, especially the patch density and the landscape shape index, influence the cooling effect of PGS at both class and landscape levels. These findings add new knowledge on factors influencing the cooling effect of PGS, and provide the biophysical theoretical basis for developing nature-based cooling strategies for urban landscape designers and planners.


2021 ◽  
Vol 13 (20) ◽  
pp. 4117
Author(s):  
Qiang Chen ◽  
Qianhao Cheng ◽  
Yunhao Chen ◽  
Kangning Li ◽  
Dandan Wang ◽  
...  

Urban building morphology has a significant impact on the urban thermal environment (UTE). The sky view factor (SVF) is an important structure index of buildings and combines height and density attributes. These factors have impact on the land surface temperature (LST). Thus, it is crucial to analyze the relationship between SVF and LST in different spatial-temporal scales. Therefore, we tried to use a building vector database to calculate the SVF, and we used remote sensing thermal infrared band to retrieve LST. Then, we analyzed the influence between SVF and LST in different spatial and temporal scales, and we analyzed the seasonal variation, day–night variation, and the impact of building height and density of the SVF–LST relationship. We selected the core built-up area of Beijing as the study area and analyzed the SVF–LST relationship in four periods in 2018. The temporal experimental results indicated that LST is higher in the obscured areas than in the open areas at nighttime. In winter, the maximum mean LST is in the open areas. The spatial experimental results indicate that the SVF and LST relationship is different in the low SVF region, with 30 m and 90 m pixel scale in the daytime. This may be the shadow cooling effect around the buildings. In addition, we discussed the effects of building height and shading on the SVF–LST relationship, and the experimental results show that the average shading ratio is the largest at 0.38 in the mid-rise building area in winter.


2013 ◽  
Vol 864-867 ◽  
pp. 2768-2771
Author(s):  
Lei Wang ◽  
Yun Long Yao ◽  
Jiao Chen ◽  
Lan Xia Wang

This paper takes land surface temperature as main indicator of urban thermal environment. Using the TM images of September 22, 2010, Harbin city, we analyze the spatial distribution characteristics of land surface temperature by mono-window algorithm. The results can be summarized as follows. The land surface temperature of estimation in Harbin City was between 9 to 27 °C. According to temperature gradient of different colors, urban land surface temperature was significantly higher than the suburbs in Harbin, and there were a few places, that was, high temperature and low temperature area showed obvious heat island effect. Strong heat island area were in the multiple center, distributed in DaoWai District, Nangang District and along the railway. From the faubourgs to the downtown area, the proportion of heat island increased gradually, the more strong the heat island effect was in the area located in the centre. From the point of the cause of heat island distribution in Harbin city, urban construction, population growth and real estate development were the main influence factors. The results of the study has important reference value for improving ecological environment of Harbin City, and mitigating urban heat island effect.


2020 ◽  
Vol 9 (10) ◽  
pp. 593
Author(s):  
Xu Ge ◽  
Dasaraden Mauree ◽  
Roberto Castello ◽  
Jean-Louis Scartezzini

Currently, more than half of the world’s population lives in cities, which leads to major changes in land use and land surface temperature (LST). The associated urban heat island (UHI) effects have multiple impacts on energy consumption and human health. A better understanding of how different land covers affect LST is necessary for mitigating adverse impacts, and supporting urban planning and public health management. This study explores a distance-based, a grid-based and a point-based analysis to investigate the influence of impervious surfaces, green area and waterbodies on LST, from large (distance and grid based analysis with 400 m grids) to smaller (point based analysis with 30 m grids) scale in the two mid-latitude cities of Paris and Geneva. The results at large scale confirm that the highest LST was observed in the city centers. A significantly positive correlation was observed between LST and impervious surface density. An anticorrelation between LST and green area density was observed in Paris. The spatial lag model was used to explore the spatial correlation among LST, NDBI, NDVI and MNDWI on a smaller scale. Inverse correlations between LST and NDVI and MNDWI, respectively, were observed. We conclude that waterbodies display the greatest mitigation on LST and UHI effects both on the large and smaller scale. Green areas play an important role in cooling effects on the smaller scale. An increase of evenly distributed green area and waterbodies in urban areas is suggested to lower LST and mitigate UHI effects.


Author(s):  
Zhijiang Zhang ◽  
Xinxin Li ◽  
Hongguang Liu

Abstract Forests are considered important to the mitigation of climate change. Biophysical effects of afforestation and deforestation on land surface temperature (LST) have been extensively documented. As a fundamental variable of forest structure, however, few studies have investigated the biophysical feedback of forest canopy height changes on LST at large scale. This study is designed to investigate the impact of forest canopy height changes on local land LST and clarify the biophysical processes controlling LST change from 2003 to 2005 over contiguous United States (CONUS) based on satellite observations. To this end, one satellite-based forest canopy height product is selected, and space-for-time approach together with energy balance equation is applied. Results show that for different forest types, namely evergreen forest (EF), deciduous forest (DF), and mixed forest (MF), taller forests present a net cooling effect (0.056 to 0.448 K) than shorter forests at annual scale. The increase in net radiation and sensible heat flux was less than the increase in the latent heat flux when forest canopy height classes converting from shorter to taller, resulting in annual net cooling effects. Furthermore, the cooling effect of EF is stronger than DF and MF, whether for tall, medium, or short forest canopy height classes. Multiple regression analysis reveals that the changes in biophysical components can effectively explain the LST change during growing season. Our findings provide a new insight for forest management decision in the purpose of mitigating climate warming.


2021 ◽  
Vol 13 (11) ◽  
pp. 2111
Author(s):  
Anna Hellings ◽  
Andreas Rienow

Unsustainable development paths have reached critical levels in Europe. In recent years, in cities, urbanization has been contributing to the intensification of urban heat islands. To analyze the development of surface urban heat islands (SUHI) in Europe in the last few years, the present study combines the land surface temperature (LST) from MODIS with the urban classes of the CORINE land cover data within 617 functional urban areas (FUAs). Urban and industrial uses have significantly higher LST than green urban areas across all years (about 4 to 6 °C), as do agricultural areas within cities. Besides land cover, location also influences LST differences. While, e.g., Bolzano (Italy) shows particularly large LST differences (>6 °C) between the core and the commuting zone, this effect is hardly visible in Porto (Portugal) and Madrid (Spain) (<2.5 °C). Cities of moderate climates show increasing differences between a city and its commuting zones with rising LST (r = 0.68), i.e., less cooling effects at night.


2020 ◽  
Vol 12 (2) ◽  
pp. 307 ◽  
Author(s):  
Fei Liu ◽  
Xinmin Zhang ◽  
Yuji Murayama ◽  
Takehiro Morimoto

Satellite-derived land surface temperature (LST) reveals the variations and impacts on the terrestrial thermal environment on a broad spatial scale. The drastic growth of urbanization-induced impervious surfaces and the urban population has generated a remarkably increasing influence on the urban thermal environment in China. This research was aimed to investigate land surface temperature (LST) intensity response to urban land cover/use by examining the thermal impact on urban settings in ten Chinese megacities (i.e., Beijing, Dongguan, Guangzhou, Hangzhou, Harbin, Nanjing, Shenyang, Suzhou, Tianjin, and Wuhan). Surface urban heat island (SUHI) footprints were scrutinized and compared by magnitude and extent. The causal mechanism among land cover composition (LCC), population, and SUHI was also identified. Spatial patterns of the thermal environments were identical to those of land cover/use. In addition, most impervious surface materials (greater than 81%) were labeled as heat sources, on the other hand, water and vegetation were functioned as heat sinks. More than 85% of heat budgets in Beijing and Guangzhou were generated from impervious surfaces. SUHI for all megacities showed spatially gradient decays between urban and surrounding rural areas; further, temperature peaks are not always dominant in the urban core, despite extremely dense impervious surfaces. The composition ratio of land cover (LCC%) negatively correlates with SUHI intensity (SUHII), whereas the population positively associates with SUHII. For all targeted megacities, land cover composition and population account for more than 63.9% of SUHI formation using geographically weighted regression. The findings can help optimize land cover/use to relieve pressure from rapid urbanization, maintain urban ecological balance, and meet the demands of sustainable urban growth.


2020 ◽  
Author(s):  
Ronghan Xu

&lt;p&gt;Heatwaves are extended periods of extremely hot weather and high temperature that have a major impact on human health, socioeconomics and natural systems. As predicted by climate models, ongoing global warming will potentially increase the incidence, intensity and duration of summertime heatwave events. Nevertheless, heat-related health impacts are largely preventable if populations, health and social care systems and public infrastructure are prepared. Therefore, this is plausible if heatwave events are studies for which heatwave real-time monitoring and assessment are central components. It is well recognized that land surface temperature retrieved by satellite sensors is an important variable associated with heatwaves and surface warming research. Land surface temperature retrieved by satellite sensors can be observed spatially and temporally, adequate for applications needing real-time and continuous measurements in quick response. In this study, Chinese Fengyun satellite data were used to monitor the land surface thermal environment during the heatwave event in Belt and Road communities. Split-window algorithm were applied to retrieve land surface temperature from thermal sensor. Spatial temporal distributions of Land surface high temperature are monitored in West Europe, India, and Australia as examples during their high temperature weather. The result shows that monitoring the real-time heatwave hazards in quick responds help provided information to the decision makers and get insight into the thermal environment characteristics over urban areas.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document