Genetic, lipidic and proteomic characterization of an arachidonic acid producing fungus, Mortierella alpina

2008 ◽  
Author(s):  
Sze-yuen Ho
2015 ◽  
Vol 23 (7) ◽  
pp. 1183-1187 ◽  
Author(s):  
Wenjia Wu ◽  
Jiacheng Yan ◽  
Xiaojun Ji ◽  
Xin Zhang ◽  
Jingsheng Shang ◽  
...  

Author(s):  
Brian K H Mo ◽  
Akinori Ando ◽  
Ryohei Nakatsuji ◽  
Tomoyo Okuda ◽  
Yuki Takemoto ◽  
...  

Abstract ω3 polyunsaturated fatty acids are currently obtained mainly from fisheries, thus sustainable alternative sources such as oleaginous microorganisms are required. Here we describe the isolation, characterization, and application of three novel ω3 desaturases with ω3 polyunsaturated fatty acid-producing activity at ordinary temperatures (28 °C). First, we selected Pythium sulcatum and Plectospira myriandra after screening for oomycetes with high eicosapentaenoic acid/arachidonic acid ratios and isolated the genes psulω3 and pmd17, respectively, which encode ω3 desaturases. Subsequent characterization showed that PSULω3 exhibited ω3 desaturase activity on both C18 and C20 ω6 polyunsaturated fatty acids while PMD17 exhibited ω3 desaturase activity exclusively on C20 ω6 polyunsaturated fatty acids. Expression of psulω3 and pmd17 in the arachidonic acid-producer Mortierella alpina resulted in transformants that produced eicosapentaenoic acid/total fatty acid values of 38% and 40%, respectively, at ordinary temperatures. These ω3 desaturases should facilitate the construction of sustainable ω3 polyunsaturated fatty acid sources.


2021 ◽  
Vol 22 (11) ◽  
pp. 6148
Author(s):  
Matteo Miceli ◽  
Silvana Casati ◽  
Pietro Allevi ◽  
Silvia Berra ◽  
Roberta Ottria ◽  
...  

A novel bioluminescent Monoacylglycerol lipase (MAGL) substrate 6-O-arachidonoylluciferin, a D-luciferin derivative, was synthesized, physico-chemically characterized, and used as highly sensitive substrate for MAGL in an assay developed for this purpose. We present here a new method based on the enzymatic cleavage of arachidonic acid with luciferin release using human Monoacylglycerol lipase (hMAGL) followed by its reaction with a chimeric luciferase, PLG2, to produce bioluminescence. Enzymatic cleavage of the new substrate by MAGL was demonstrated, and kinetic constants Km and Vmax were determined. 6-O-arachidonoylluciferin has proved to be a highly sensitive substrate for MAGL. The bioluminescence assay (LOD 90 pM, LOQ 300 pM) is much more sensitive and should suffer fewer biological interferences in cells lysate applications than typical fluorometric methods. The assay was validated for the identification and characterization of MAGL modulators using the well-known MAGL inhibitor JZL184. The use of PLG2 displaying distinct bioluminescence color and kinetics may offer a highly desirable opportunity to extend the range of applications to cell-based assays.


1988 ◽  
Vol 263 (5) ◽  
pp. 2536-2542
Author(s):  
M Laniado-Schwartzman ◽  
K L Davis ◽  
J C McGiff ◽  
R D Levere ◽  
N G Abraham

Sign in / Sign up

Export Citation Format

Share Document