scholarly journals A Study on the Turbulence Length Scales in von Karman Model by Using Offshore Wind Field Measurement

2017 ◽  
Vol 42 (2) ◽  
pp. 45-56
Author(s):  
Sho OH ◽  
Takeshi ISHIHARA
Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 470
Author(s):  
Zhenxing Gao ◽  
Haofeng Wang ◽  
Zhiwei Xiang ◽  
Debao Wang

The instantaneous wind field and air data, including true airspeed, angle of attack, angle of sideslip, cannot be measured and recorded accurately in wind disturbance. A new air data and wind field estimation method is proposed based on flight data in this study. Since the wind field is the horizontal prevailing wind added by turbulence, the slowly time-varying prevailing wind and small-scale turbulence are described by the exponentially correlated stochastic wind model and von Karman turbulence model, respectively. The system update equation of air data is built based on inertial measurements instead of the complex aerodynamic and aero-engine model of aircraft. Benefitted by the post-analysis characteristics of flight data, a forward–backward filtering algorithm was designed to improve the estimation accuracy. Simulation results indicate that the forward–backward filter integrated with the von Karman turbulence model can reduce the estimation error and ensure filtering stability. A further test with actual flight data shows that the forward–backward filter is not only able to track the wide-range change in prevailing wind but also reduce the adverse effects of uncertain disturbance on estimation accuracy.


In the first part of this paper opportunity has been taken to make some adjustments in certain general formulae of previous papers, the necessity for which appeared in discussions with other workers on this subject. The general results thus amended are then applied to a general discussion of the stability problem including the effect of the trailing wake which was deliberately excluded in the previous paper. The general conclusion is that to a first approximation the wake, as usually assumed, has little or no effect on the reality of the roots of the period equation, but that it may introduce instability of the oscillations, if the centre of gravity of the element is not sufficiently far forward. During the discussion contact is made with certain partial results recently obtained by von Karman and Sears, which are shown to be particular cases of the general formulae. An Appendix is also added containing certain results on the motion of a vortex behind a moving cylinder, which were obtained to justify certain of the assumptions underlying the trail theory.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 714
Author(s):  
Jiujiang Wang ◽  
Xin Liu ◽  
Yuanyu Yu ◽  
Yao Li ◽  
Ching-Hsiang Cheng ◽  
...  

Analytical modeling of capacitive micromachined ultrasonic transducer (CMUT) is one of the commonly used modeling methods and has the advantages of intuitive understanding of the physics of CMUTs and convergent when modeling of collapse mode CMUT. This review article summarizes analytical modeling of the collapse voltage and shows that the collapse voltage of a CMUT correlates with the effective gap height and the electrode area. There are analytical expressions for the collapse voltage. Modeling of the membrane deflections are characterized by governing equations from Timoshenko, von Kármán equations and the 2D plate equation, and solved by various methods such as Galerkin’s method and perturbation method. Analytical expressions from Timoshenko’s equation can be used for small deflections, while analytical expression from von Kármán equations can be used for both small and large deflections.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Mi Jin Lee ◽  
Jum-Ran Kang

Abstract In this paper, we consider the blow-up result of solution for a quasilinear von Karman equation of memory type with nonpositive initial energy as well as positive initial energy. For nonincreasing function $g>0$ g > 0 and nondecreasing function f, we prove a finite time blow-up result under suitable condition on the initial data.


Sign in / Sign up

Export Citation Format

Share Document