scholarly journals TEMPERATURE EFFECT ON THE STRENGTH OF ADHESIVELY BONDED SINGLE LAP JOINTS

2012 ◽  
Vol 11 (1-2) ◽  
pp. 03 ◽  
Author(s):  
K. R. Osanai ◽  
J. M. L. Reis

The purpose of this paper is to study some of the factors that affect the shear strength of Single Lap Joints (SLJ). Based in work conditions for different applications, tests were made in order to define the influence of geometry and temperature on the strength of SLJ under shear load. The adhesive used to make the joints was the epoxy adhesive ARC858 and it was tested under temperatures ranging between 21°C and 70°C and overlap length of 12.5mm and 18.75mm. Results of those tests showed that shear strength increased due to geometry with an overlap of 18.75mm and a great shear strength loss ranging from 30°C to 50°C. The failure mechanism was adhesive failure.

2013 ◽  
Vol 758 ◽  
pp. 119-124 ◽  
Author(s):  
Kenji R. Osanai ◽  
João M.L. Reis

The purpose of this paper is to study some of the factors that affect the shear strength of Single Lap Joints (SLJ). Based in work conditions for different applications, tests were made in order to define the influence of geometry and temperature on the strength of SLJ under shear load. The adhesive used to make the joints was the epoxy adhesive ARC858 and it was tested under temperatures ranging between 21°C and 70°C and overlap length of 12.5mm and 18.75mm. Results of those tests showed that shear strength increased due to geometry with an overlap of 18.75mm and a great shear strength loss ranging from 30°C to 50°C. The failure mechanism was adhesive failure.


Author(s):  
Davood Askari ◽  
Mehrdad N. Ghasemi-Nejhad

Owing to their superior mechanical properties, carbon nanotubes (CNTs) can be used as an additional reinforcement to improve the mechanical properties of laminated composite materials. To incorporate the excellent properties of CNTs into the existing traditional composite technology, vertically aligned high density arrays of CNTs were grown perpendicular to the surface of 2-D woven cloths and tows of various fibrous materials. The nano-forest like structures of fabrics is used to fabricate 3-D reinforced nanocomposites. Due to the presence of aligned CNTs in through-the-thickness direction, it is expected that the inter-laminar and through-the-thickness properties of the composite laminate will be improved considerably. To demonstrate the effectiveness of our approach, various composite single lap-joint specimens were fabricated for inter-laminar shear strength testing. Carbon woven cloths with and without CNTs nano-forests were inserted in between the single lap-joints using epoxy adhesive to measure the interlaminar shear strength improvements due to the presence of through-the-thickness aligned CNTs nano-forests. It is observed that single lap-joints with carbon cloth insertion layers having CNTs nano-forest can carry up to 12% higher shear stress and 16% higher strain-to-failure. The failures of samples with nano-forests were completely cohesive while the sample with carbon woven cloth insertion failed adhesively. This concludes that the adhesion of adjacent carbon fabric layers can be considerably improved due to the growth of vertically aligned CNTs nano-forest in through-the-thickness direction.


Author(s):  
E Kara ◽  
A Kurşun ◽  
MR Haboğlu ◽  
HM Enginsoy ◽  
H Aykul

The joining techniques of lightweight and strong materials in the transport industry (e.g. automotive, aerospace, shipbuilding industries) are very important for the safety of the entire structure. In these industries, when compared with other joining methods, the use of adhesively bonded joints presents unique properties such as greater strength, design flexibility, and reduction in fuel consumption, all thanks to low weight. The aim of this study was the analysis of the tensile fatigue behavior of adhesively bonded glass fiber/epoxy laminated composite single-lap joints with three different specimen types including 30, 40 and 50 mm overlap lengths. In this study, composite adherents were manufactured via vacuum-assisted resin transfer molding and were bonded using Loctite 9461 A&B toughened epoxy adhesive. The effect of a surface treatment method on the bonding strength was considered and it led to an increment of about 40%. A numerical analysis based on a finite element model was performed to predict fatigue life curve, and the predicted results showed good agreement with the experimental investigation.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Kai Wei ◽  
Yiwei Chen ◽  
Maojun Li ◽  
Xujing Yang

Carbon fiber-reinforced plastics- (CFRP-) steel single lap joints with regard to tensile loading with two levels of adhesives and four levels of overlap lengths were experimentally analyzed and numerically simulated. Both joint strength and failure mechanism were found to be highly dependent on adhesive type and overlap length. Joints with 7779 structural adhesive were more ductile and produced about 2-3 kN higher failure load than MA830 structural adhesive. Failure load with the two adhesives increased about 147 N and 176 N, respectively, with increasing 1 mm of the overlap length. Cohesion failure was observed in both types of adhesive joints. As the overlap length increased, interface failure appeared solely on the edge of the overlap in 7779 adhesive joints. Finite element analysis (FEA) results revealed that peel and shear stress distributions were nonuniform, which were less severe as overlap length increased. Severe stress concentration was observed on the overlap edge, and shear failure of the adhesive was the main reason for the adhesive failure.


Sign in / Sign up

Export Citation Format

Share Document