scholarly journals Evaluating the Use of the Molybdenite Re-Os Chronometer in Dating Gold Mineralization: Evidence from the Haigou Deposit, Northeastern China

2019 ◽  
Vol 114 (5) ◽  
pp. 897-915 ◽  
Author(s):  
Degao Zhai ◽  
Anthony E. Williams-Jones ◽  
Jiajun Liu ◽  
David Selby ◽  
Chao Li ◽  
...  

Abstract The Haigou lode gold deposit (>40 tons [t] at 3.4 g/t), which is located near the eastern boundary of the Central Asian orogenic belt and the North China craton, is one of the largest gold deposits in northeastern China. Native gold is intergrown with molybdenite and pyrite in auriferous quartz veins hosted by a monzogranite-monzonite stock and locally by Proterozoic gneiss, thereby offering an excellent opportunity to directly date the mineralizing event. Uranium-Pb age determinations for zircon yielded ages for the monzogranite and monzonite of 327.1 ± 1.1 and 329.5 ± 1.0 Ma, respectively. Numerous mafic to felsic dikes, which are crosscut by ore veins (pre-ore), parallel to these veins (possibly synore), or crosscut by them (post-ore), were carefully examined and dated. Their zircon 206Pb/238U ages are 318.3 ± 1.0, 310.9 ± 1.1, and 134.9 ± 0.4 Ma, respectively, thereby placing the timing of gold mineralization within the relatively large interval of 318.3 ± 1.0 to 134.9 ± 0.4 Ma. The age of mineralization was determined directly using the Re-Os method applied to molybdenite. A total of 19 molybdenite samples separated from auriferous quartz veins yielded widely differing Re-Os model ages of 467 to 155 Ma, and replicate analyses of individual samples also yielded widely differing ages. Significantly, the wide range is attributable entirely to the results obtained for some coarse-grained molybdenite samples and is interpreted to be due to Re and Os isotope decoupling, the considerable spatial Re heterogeneity, the analytical procedure (e.g., use of small sample aliquots), and the post-ore deformation. Nine of the samples, which are all fine grained, yielded a robust weighted mean model age of 310 ± 3 Ma and an isochron age of 309 ± 8 Ma. Thus, the molybdenite Re-Os ages are identical, within uncertainty, to those of the dikes that are parallel to the ore veins, indicating that these dikes were emplaced contemporaneously with the ore and that they and the Haigou gold mineralization are of late Paleozoic age (ca. 310 Ma). Finally, a sericite sample obtained from an auriferous vein returned a 40Ar/39Ar plateau age of 165.3 ± 1.2 Ma, which is much younger than the age of the mineralization constrained by Re-Os age determinations of molybdenite. This indicates that the 40Ar/39Ar isotope system was reset by post-ore thermal events. Our new geochronological data provide evidence for late Paleozoic gold mineralization in Haigou, which makes it the oldest known lode gold deposit in the easternmost Central Asian orogenic belt, a finding that has important implications for precious metal mineral exploration in the eastern part of the Solonker-Xar Moron-Changchun-Yanji suture zone between the Central Asian orogenic belt and the North China craton. This study also indicates that accurate and reproducible molybdenite Re-Os ages representing the true timing of ore deposition need an integrated combination of careful petrography, proper sampling procedures, sufficiently large analyzed aliquots, multiple analyses of individual samples, and multiple dating methods.

2020 ◽  
Vol 157 (11) ◽  
pp. 1877-1897 ◽  
Author(s):  
J.-X. Wang ◽  
K.-X. Zhang ◽  
Brian F. Windley ◽  
B.-W. Song ◽  
X.-H. Kou ◽  
...  

AbstractAccretionary orogens contain key evidence for the conversion of oceanic to continental crust. The late tectonic history and closure time of the Palaeo-Asian Ocean are recorded in the Mazongshan subduction–accretion complex in the southern Beishan margin of the Central Asian Orogenic Belt. We present new data on the structure, petrology, geochemistry and zircon U–Pb isotope ages of the Mazongshan subduction–accretion complex, which is a tectonic mélange with a block-in-matrix structure. The blocks are of serpentinized peridotite, basalt, gabbro, basaltic andesite, chert and seamount sediments within a matrix that is mainly composed of fore-arc-trench turbidites. U–Pb zircon ages of two gabbros are 454.6 ± 2.5 Ma and 434.1 ± 3.6 Ma, an andesite has a U–Pb zircon age of 451.3 ± 3.5 Ma and a tuffaceous slate has the youngest U–Pb zircon age of 353.6 ± 5.1 Ma. These new isotopic ages, combined with published data on ophiolitic mélanges from central Beishan, indicate that the subduction–accretion of Beishan in the southernmost Central Asian Orogenic Belt lasted until Late Ordovician – Early Carboniferous time. Structure and age data demonstrate that the younging direction of accretion was southwards and that the subduction zone dipped continuously to the north. Accordingly, these results record the conversion of oceanic to continental crust in the southern Beishan accretionary collage.


Minerals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 880
Author(s):  
Wilfried Winkler ◽  
Denise Bussien ◽  
Munktsengel Baatar ◽  
Chimedtseren Anaad ◽  
Albrecht von Quadt

Our study is aimed at reconstructing the Palaeozoic–early Mesozoic plate tectonic development of the Central Asian Orogenic Belt in central and southeast Mongolia (Gobi). We use sandstone provenance signatures including laser ablation U-Pb ages of detrital zircons, their epsilon hafnium isotope signatures, and detrital framework grain analyses. We adopt a well-established terran subdivision of central and southeastern Mongolia. However, according to their affinity and tectonic assemblage we group them into three larger units consisting of continental basement, rift-passive continental margin and arc elements, respectively. These are in today’s coordinates: (i) in the north the late Cambrian collage from which the later Mongol-Okhotsk and the Central Mongolia-Erguna mountain ranges resulted, (ii) in the south a heterogeneous block from which the South Mongolia-Xin’gan and Inner Mongolia-Xilin belts developed, and (iii) in between we still distinguish the intra-oceanic volcanic arc of the Gurvansayhan terrane. We present a model for paleotectonic development for the period from Cambrian to Jurassic, which also integrates findings from the Central Asian Orogenic Belt in China and Russia. This mobilistic model implies an interplay of rift and drift processes, ocean formation, oceanic subduction, basin inversion, collision and suture formation in space and time. The final assemblage of the Central Asian Orogenic Belt occurred in Early Jurassic.


Sign in / Sign up

Export Citation Format

Share Document