Magmatic-Hydrothermal Gold Mineralization at the Lone Tree Mine, Battle Mountain District, Nevada

2019 ◽  
Vol 114 (5) ◽  
pp. 811-856 ◽  
Author(s):  
Elizabeth A. Holley ◽  
Justin A. Lowe ◽  
Craig A. Johnson ◽  
Michael J. Pribil

Abstract The Lone Tree deposit is located in the northern Battle Mountain mining district, Nevada. Prior to mine closure in 2006, Santa Fe Pacific Gold and Newmont produced 4.2 Moz of gold at an average grade of 2.06 g/t at Lone Tree, primarily from the N-S– to NNW-SSE–striking Wayne zone. The ore is located between the Roberts Mountain and Golconda thrusts in siliciclastic rocks of the Ordovician Valmy Formation and in the Pennsylvanian-Permian Battle Mountain and Edna Mountain Formations, and above the Golconda thrust in siliciclastic and carbonate rocks of the Mississippian to Permian Havallah sequence. Ore is also hosted by rhyolitic dikes that were emplaced at 40.95 ± 0.06 Ma based on zircon U-Pb chemical abrasion-thermal ionization mass spectrometry. The gold is associated with sericitic and argillic alteration of the siliciclastic rocks and dikes and with decarbonatization and Fe carbonate alteration of the carbonate-bearing units, as well as in Fe-As sulfide and finegrained quartz alteration of all rock types. Oxidation affects 30 to 45% of the deposit, penetrating into the stratigraphy along numerous steeply dipping north-south, east-west, and north-northeast–south-southwest structures. Gold is positively correlated with Ag, As, Hg, and Sb. The highest Au grades occur in quartz-sulfide ore hosted in siliciclastic and carbonate sedimentary rocks and rhyolitic intrusions. In this ore style, fine-grained quartz and sericite are intergrown with disseminated sulfide minerals (quartz-sericite-pyrite alteration), constituting cores of weakly mineralized pyrite or marcasite, which are surrounded by fuzzy arsenopyrite rims that contain up to ~2,000 ppm Au. Low gold grades occur in late-stage banded pyrite breccias consisting of a finely zoned Au-poor pyrite matrix surrounding jigsaw-fit clasts of quartz-, illite-, barite-, and adularia-altered siliciclastic rock. The timing of main-stage mineralization is bracketed between the emplacement of the dikes and an adularia 40Ar/39Ar age of 40.14 ± 0.74 Ma. Sericite intergrown with arsenopyrite-rimmed pyrite in phenocrysts of the rhyolite dikes gave δ18O values of 1.6 to 9.5‰ and δD values of –105 to –145‰. For temperatures of 300 ± 100°C, the calculated fluid isotopic compositions are consistent with felsic magmatic water and minor modifications by mixing with meteoric water and exchange with wall rocks. In the silica-sulfide ore, in situ isotopic laser ablation-multicollector-inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) analyses of pyrite cores yielded δ34S values ranging from 3.4 to 7.7‰, with average values of 5.6‰ in the felsic dikes, 4.5‰ in the siliciclastic rocks, and 5.3‰ in the carbonate rocks. These values match conventional pyrite δ34S data reported for Eocene porphyry systems elsewhere in the district. Nanoscale secondary ion mass spectrometry analyses show that gold and associated trace elements occur in submicron-scale zones within arsenopyrite rims on pyrite. The average δ34S values of the arsenopyrite rims are 5.3 to 6.5‰ heavier than the pyrite cores, indicating cooling and an increasing H2S/SO2 ratio. The highest grades resulted from episodic pulses of a gold-rich fluid that was partly derived from, or exchanged with, the sedimentary host rocks. In situ LA-MC-ICP-MS δ34S values for the late-stage banded pyrite breccia become progressively lighter from veinlet margin to center, reaching a low of –32‰. These veinlets indicate a shift from main-stage quartz-sericite-pyrite and intermediate argillic alteration to more neutral pH and oxidizing conditions during late-stage mineralization, indicating either increasing interaction between the fluid and sedimentary sulfur sources in the host-rock package or bacterial sulfate reduction and supergene sulfide precipitation.

2021 ◽  
Author(s):  
Jordan A. McDivitt ◽  
Steffen G. Hagemann ◽  
Anthony I.S. Kemp ◽  
Nicolas Thébaud ◽  
Christopher M. Fisher ◽  
...  

Abstract Different genetic and timing models for gold mineralization in the Kalgoorlie gold camp (Yilgarn craton, Western Australia) suggest either broadly synchronous, late-stage mineralization related to metamorphic fluids at ca. 2640 Ma or a punctuated mineralization history from ca. 2675 to 2640 Ma with the involvement of early magmatic-hydrothermal systems (represented by the Fimiston, Hidden Secret, and Oroya gold-telluride lodes) and late metamorphic fluids (represented by the Mt. Charlotte gold stockwork veins). The results of U-Pb and Sm-Nd geochronological studies of zircon, apatite, and titanite from pre-ore dikes and syn-ore dikes constrain the absolute timing of mineralization and provide new evidence to this timing controversy. Emplacement ages constrained by U-Pb sensitive high-resolution ion microprobe (SHRIMP) zircon data are interpreted to be similar for both the pre-ore dikes (n = 10) and syn-ore dikes (n = 7) at ca. 2675 Ma. An inferred emplacement age of ca. 2675 Ma for the syn-ore dikes is supported by a Sm-Nd isochron age from apatite (laser ablation-inductively coupled plasma-mass spectrometry; LA-ICP-MS) of 2678 ± 15 Ma and by a U-Pb titanite age (LA-ICP-MS) of 2679 ± 6 Ma. The results of chemical abrasion-isotope dilution-thermal ionization mass spectrometry U-Pb zircon analysis from the pre- and syn-ore dikes are complicated by multistage Pb loss, reverse discordance, and potential inheritance. However, the data are compatible with the emplacement of Fimiston/Hidden Secret gold mineralization at ca. 2675 Ma and suggest a younger age for Oroya mineralization at ca. 2665 Ma. These results contrast with models for orogenic gold deposits that invoke broadly synchronous, late-stage mineralization related to metamorphic fluids at ca. 2640 Ma. The bulk of the Kalgoorlie gold camp’s estimated 2,300 t Au endowment was emplaced at ca. 2675 Ma as Fimiston/Hidden Secret Au mineralization. This early Au mineralization was deformed and overprinted twice by subordinate Au mineralization at ca. 2665 (Oroya mineralization) and ca. 2640 Ma (Mt. Charlotte mineralization). Gold mineralization in the Kalgoorlie gold camp was protracted in nature from ca. 2675 to 2640 Ma and reflects the interplay of early magmatic (Fimiston, Hidden Secret, Oroya) and late metamorphic (Mt. Charlotte) hydrothermal fluid systems in the formation of hybrid intrusion-related and metamorphic orebodies.


2019 ◽  
Vol 34 (6) ◽  
pp. 1223-1232 ◽  
Author(s):  
Hai-Ou Gu ◽  
He Sun ◽  
Fangyue Wang ◽  
Can Ge ◽  
Taofa Zhou

An isobaric interference correction model was proposed for the in situ Hf isotopic analysis of zircons with high Yb/Hf ratios using LA-MC-ICP-MS.


2019 ◽  
Vol 34 (9) ◽  
pp. 1800-1809 ◽  
Author(s):  
Wen Zhang ◽  
Zaicong Wang ◽  
Frédéric Moynier ◽  
Edward Inglis ◽  
Shengyu Tian ◽  
...  

An in situ Zr isotopic analytical method for zircons was developed using LA-MC-ICP-MS to reveal the Zr stable isotope variation in the complex mineral crystallization history.


2019 ◽  
Vol 34 (8) ◽  
pp. 1546-1552 ◽  
Author(s):  
Lü-Yun Zhu ◽  
Yong-Sheng Liu ◽  
Shao-Yong Jiang ◽  
Jie Lin

The 187Os/188Os ratio in low-Os sulfides could be in situ measured precisely by LA-MC-ICP-MS equipping an array of ion counters.


2020 ◽  
Vol 35 (3) ◽  
pp. 510-517
Author(s):  
Chao Huang ◽  
Yue-Heng Yang ◽  
Lie-Wen Xie ◽  
Shi-Tou Wu ◽  
Hao Wang ◽  
...  

In the present work, we describe a sequential U–Pb and Sm–Nd systematics measurement from natural LREE-enriched minerals using Neptune Plus MC-ICP-MS coupled with a 193 nm excimer laser in a single shot.


2006 ◽  
Vol 10 ◽  
pp. 25-28 ◽  
Author(s):  
Dirk Frei ◽  
Julie A. Hollis ◽  
Axel Gerdes ◽  
Dan Harlov ◽  
Christine Karlsson ◽  
...  

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was developed in 1985 and the first commercial laser ablation systems were introduced in the mid 1990s. Since then, LA-ICP-MS has become an important analytical tool in the earth sciences. Initially, the main interest for geologists was in its ability to quantitatively determine the contents of a wide range of elements in many minerals at very low concentrations (a few ppm and below) with relatively high spatial resolution (spot diameters of typically 30–100 μm). The potential of LA-ICP-MS for rapid in situ U–Th–Pb geochronology was already realised in the early to mid 1990s. However, the full potential of LA-ICP-MS as the low-cost alternative to ion-microprobe techniques for highly precise and accurate in situ U–Th–Pb age dating was not realised until the relatively recent advances in laser technologies and the introduction of magnetic sectorfield ICP-MS (SF-ICPMS) instruments. In March 2005, the Geological Survey of Denmark and Greenland (GEUS) commissioned a new laser ablation magnetic sectorfield inductively coupled plasma mass spectrometry (LA-SF-ICP-MS) facility employing a ThermoFinnigan Element2 high resolution magnetic sectorfield ICP-MS and a Merchantek New Wave 213 nm UV laser ablation system. The new GEUS LA-SF-ICP-MS facility is widely used on Survey research projects in Denmark and Greenland, as well as in collaborative research and contract projects conducted with partners from academia and industry worldwide. Here, we present examples from some of the these ongoing studies that highlight the application of the new facility for advanced geochronological and trace element in situ microanalysis of geomaterials. The application of LASF-ICP-MS based in situ zircon geochronology to regional studies addressing the Archaean geology of southern West Greenland is presented by Hollis et al. (2006, this volume).


Sign in / Sign up

Export Citation Format

Share Document