scholarly journals Texture and Trace Element Composition of Rutile in Orogenic Gold Deposits

2021 ◽  
Vol 116 (8) ◽  
pp. 1865-1892
Author(s):  
Marjorie Sciuba ◽  
Georges Beaudoin

Abstract Rutile from a wide range of orogenic gold deposits and districts, including representative world-class deposits, was investigated for its texture and trace element composition using scanning electron microscopy, electron probe microanalysis, and laser ablation-inductively coupled plasma-mass spectrometry. Deposits are hosted in various country rocks including felsic to ultramafic igneous rocks and sedimentary rocks, which were metamorphosed from lower greenschist to middle amphibolite facies and with ages of mineralization that range from Archean to Phanerozoic. Rutile presents a wide range of size, texture, and chemical zoning. Rutile is the dominant TiO2 polymorph in orogenic gold mineralization. Elemental plots and partial least square-discriminant analysis suggest that the composition of the country rocks exerts a strong control on concentrations of V, Nb, Ta, and Cr in rutile, whereas the metamorphic facies of the country rocks controls concentrations of V, Zr, Sc, U, rare earth elements, Y, Ca, Th, and Ba in rutile. The trace element composition of rutile in orogenic gold deposits can be distinguished from rutile in other deposit types and geologic settings. Elemental ratios Nb/V, Nb/Sb, and Sn/V differentiate the rutile trace element composition of orogenic gold deposits compared with those from other geologic settings and environments. A binary plot of Nb/V vs. W enables distinction of rutile in metamorphic-hydrothermal and hydrothermal deposits from rutile in magmatic-hydrothermal deposits and magmatic environments. The binary plot Nb/Sb vs. Sn/V distinguishes rutile in orogenic gold deposits from other geologic settings and environments. Results are used to establish geochemical criteria to constrain the source of rutile for indicator mineral surveys and potentially guide mineral exploration.

2019 ◽  
Vol 55 (6) ◽  
pp. 1149-1172 ◽  
Author(s):  
Marjorie Sciuba ◽  
Georges Beaudoin ◽  
Donald Grzela ◽  
Sheida Makvandi

2020 ◽  
Vol 105 (6) ◽  
pp. 820-832 ◽  
Author(s):  
Aleksandr S. Stepanov ◽  
Leonid V. Danyushevsky ◽  
Ross R. Large ◽  
Indrani Mukherjee ◽  
Irina A. Zhukova

Abstract Pyrite is a common mineral in sedimentary rocks and is the major host for many chalcophile trace elements utilized as important tracers of the evolution of the ancient hydrosphere. Measurement of trace element composition of pyrite in sedimentary rocks is challenging due to fine-grain size and intergrowth with silicate matrix and other sulfide minerals. In this contribution, we describe a method for calculation of trace element composition of sedimentary pyrite from time-resolved LA-ICP-MS data. The method involves an analysis of both pyrite and pyrite-free sediment matrix, segmentation of LA-ICP-MS spectra, normalization to total, regression analysis of dependencies between the elements, and calculation of normalized composition of the mineral. Sulfur is chosen as an explanatory variable, relative to which all regressions are calculated. The S content value used for calculation of element concentrations from the regressions is calculated from the total, eliminating the need for independent constraints. The algorithm allows efficient measurement of concentrations of multiple chalcophile trace elements in pyrite in a wide range of samples, including quantification of detection limits and uncertainties while excluding operator bias. The data suggest that the main sources of uncertainties in pyrite composition are sample heterogeneity and counting statistics for elements of low abundance. The analysis of regression data of time-resolved LA-ICP-MS measurements could provide new insights into the geochemistry of the sedimentary rocks and minerals. It allows quantification of ratios of elements that do not have reference material available (such as Hg) and provides estimates on the content of non-sulfidic Fe in the silicate matrix. Regression analysis of the mixed LA-ICP-MS signal could be a powerful technique for deconvolution of phase compositions in complex multicomponent samples.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Graham Heinson ◽  
Jingming Duan ◽  
Alison Kirkby ◽  
Kate Robertson ◽  
Stephan Thiel ◽  
...  

AbstractOrogenic gold deposits provide a significant source of the world’s gold and form along faults over a wide range of crustal depths spanning sub-greenschist to granulite grade faces, but the source depths of the gold remains poorly understood. In this paper we compiled thirty years of long-period magnetotelluric (MT) and geomagnetic depth sounding (GDS) data across western Victoria and south-eastern South Australia that have sensitivity to the electrical resistivity of the crust and mantle, which in turn depend on past thermal and fluid processes. This region contains one of the world’s foremost and largest Phanerozoic (440 Ma) orogenic gold provinces that has produced 2% of historic worldwide gold production. Three-dimensional inversion of the long-period MT and GDS data shows a remarkable correlation between orogenic gold deposits with > 1 t production and a < 20 Ω m low-resistivity region at crustal depths > 20 km. This low-resistivity region is consistent with seismically-imaged tectonically thickened marine sediments in the Lachlan Orogen that contain organic carbon (C), sulphides such as pyrite (FeS2) and colloidal gold (Au). Additional heat sources at 440 Ma due to slab break-off after subduction have been suggested to rapidly increase the temperature of the marine sediments at mid to lower crustal depth, releasing HS− ligands for Au, and CO2. We argue that the low electrical resistivity signature of the lower crust we see today is from a combination of flake graphite produced in situ from the amphibolite grade metamorphism of organic-carbon in the marine sediments, and precipitated graphite through retrograde hydration reactions of CO2 released during the rapid heating of the sediments. Thus, these geophysical data image a fossil source and pathway zone for one of the world’s richest orogenic gold provinces.


2021 ◽  
Author(s):  
I J Jacques ◽  
A J Anderson ◽  
S G Nielsen

The Tl isotopic and trace element composition of K-feldspar, mica, pollucite and pyrite from 13 niobium-yttrium-fluorine (NYF)-type and 14 lithium-cesium-tantalum (LCT)-type rare-element pegmatites was investigated. In general, the epsilon-205Tl values for K-feldspar in NYF- and LCT-type pegmatites increases with increasing magmatic fractionation. Both NYF and LCT pegmatites display a wide range in epsilon-205Tl (-4.25 to 9.41), which complicates attempts to characterize source reservoirs. We suggest 205Tl-enrichment during pegmatite crystallization occurs as Tl partitions between the residual melt and a coexisting aqueous fluid or flux-rich silicate liquid. Preferential association of 205Tl with Cl in the immiscible aqueous fluid may influence the isotopic character of the growing pegmatite minerals. Subsolidus alteration of K-feldspar by aqueous fluids, as indicated by the redistribution of Cs in K-feldspar, resulted in epsilon-205Tl values below the crustal average (-2.0 epsilon-205Tl). Such low epsilon-205Tl values in K-feldspar is attributed to preferential removal and transport of 205Tl by Cl-bearing fluids during dissolution and reprecipitation. The combination of thallium isotope and trace element data may be used to examine late-stage processes related to rare-element mineralization in some pegmatites. High epsilon-205Tl and Ga in late-stage muscovite appears to be a favorable indicator of rare-element enrichment LCT pegmatites and may be a useful exploration vector.


Sign in / Sign up

Export Citation Format

Share Document