scholarly journals Climate Change Impacts on Agricultural Drought for Major Upland Crops using Soil Moisture Model -Focused on the Jeollanam-do-

2015 ◽  
Vol 57 (3) ◽  
pp. 65-76 ◽  
Author(s):  
Eun-Mi Hong ◽  
Won-Ho Nam ◽  
Jin-Yong Choi
2020 ◽  
Vol 12 (21) ◽  
pp. 9104
Author(s):  
Ahmed Alqallaf ◽  
Bader Al-Anzi ◽  
Meshal Alabdullah

Arid ecosystems are extremely vulnerable to climate change, which is considered one of the serious global environmental issues that can cause critical challenges to the hydrological cycle in arid ecosystems. This work focused on assessing the effectiveness of supplemental irrigation to improve the actual soil moisture content in arid ecosystems and considering climate change impacts on soil moisture. The study was conducted at two fenced protected sites in Kuwait. The first site is naturally covered with Rhanterietum epapposum, whereas the other study site is a supplemented irrigated site, containing several revegetated native plants. The results showed that supplemental irrigation highly improved soil moisture (∆SM) during the winter season by >50%. However, during the summer season, the rainfed and irrigated site showed low ∆SM due to the high temperature and high evapotranspiration (ET) rates. We also found that ∆SM would negatively get impacted by climate change. The climate change projection results showed that temperature would increase by 12%–23%, ET would increase by 17%–19%, and precipitation would decrease by 31%–46% by 2100. Such climate change impacts may also shift the current ecosystem from an arid to a hyper-arid ecosystem. Therefore, we concluded that irrigation is a practical option to support the ∆SM during the low-temperature months only (spring and winter) since the results did not show any progress during the summer season. It is also essential to consider the possibility of future shifting in ecosystems and plant communities in restoration and revegetation planning.


2019 ◽  
Vol 55 (10) ◽  
pp. 8142-8163 ◽  
Author(s):  
Andre R. Erler ◽  
Steven K. Frey ◽  
Omar Khader ◽  
Marc d'Orgeville ◽  
Young‐Jin Park ◽  
...  

2016 ◽  
Vol 65 ◽  
pp. 7-15 ◽  
Author(s):  
Jaepil Cho ◽  
Gwangdon Ko ◽  
Kwangyoung Kim ◽  
Chansung Oh

2016 ◽  
Vol 9 (8) ◽  
pp. 2809-2832 ◽  
Author(s):  
Bart van den Hurk ◽  
Hyungjun Kim ◽  
Gerhard Krinner ◽  
Sonia I. Seneviratne ◽  
Chris Derksen ◽  
...  

Abstract. The Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP) is designed to provide a comprehensive assessment of land surface, snow and soil moisture feedbacks on climate variability and climate change, and to diagnose systematic biases in the land modules of current Earth system models (ESMs). The solid and liquid water stored at the land surface has a large influence on the regional climate, its variability and predictability, including effects on the energy, water and carbon cycles. Notably, snow and soil moisture affect surface radiation and flux partitioning properties, moisture storage and land surface memory. They both strongly affect atmospheric conditions, in particular surface air temperature and precipitation, but also large-scale circulation patterns. However, models show divergent responses and representations of these feedbacks as well as systematic biases in the underlying processes. LS3MIP will provide the means to quantify the associated uncertainties and better constrain climate change projections, which is of particular interest for highly vulnerable regions (densely populated areas, agricultural regions, the Arctic, semi-arid and other sensitive terrestrial ecosystems). The experiments are subdivided in two components, the first addressing systematic land biases in offline mode (“LMIP”, building upon the 3rd phase of Global Soil Wetness Project; GSWP3) and the second addressing land feedbacks attributed to soil moisture and snow in an integrated framework (“LFMIP”, building upon the GLACE-CMIP blueprint).


2021 ◽  
Vol 14 (17) ◽  
Author(s):  
Abbas Ranjbar Saadatabadi ◽  
Naser Izadi ◽  
Elaheh Ghasemi Karakani ◽  
Ebrahim Fattahi ◽  
Ali Akbar Shamsipour

2020 ◽  
Vol 12 (9) ◽  
pp. 1455
Author(s):  
Yaasiin Oozeer ◽  
Christopher G. Fletcher ◽  
Catherine Champagne

Soil moisture is a critical indicator for climate change and agricultural drought, but its measurement is challenging due to large variability with land cover, soil type, time, space and depth. Satellite estimates of soil moisture are highly desirable and have become more widely available over the past decade. This study investigates and compares the performance of four surface soil moisture satellite datasets over Canada, namely, Soil Moisture and Ocean Salinity Level 3 (SMOS L3), versions 3.3 and 4.2 of European Space Agency Climate Change Initiative (ESA CCI) soil moisture product and a recent product called SMOS-INRA-CESBIO (SMOS-IC) that contains corrections designed to reduce several known sources of uncertainty in SMOS L3. These datasets were evaluated against in situ networks located in mostly agricultural regions of Canada for the period 2012 to 2014. Two statistical comparison methods were used, namely, metrics for mean soil moisture and median of metrics. The results suggest that, while both methods show similar comparisons for regional networks, over large networks, the median of metrics method is more representative of the overall correlation and variability and is therefore a more appropriate method for evaluating the performance of satellite products. Overall, the SMOS products have higher daily temporal correlations, but larger biases, against in situ soil moisture than the ESA CCI products, with SMOS-IC having higher correlations and smaller variability than SMOS L3. The SMOS products capture daily wetting and drying events better than the ESA CCI products, with the SMOS products capturing at least 75% of observed drying as compared to 55% for the ESA CCI products. Overall, for periods during which there are sufficient observations, both SMOS products are more suitable for agricultural applications over Canada than the ESA CCI products, even though SMOS-IC is able to capture soil moisture variability more accurately than SMOS L3.


Sign in / Sign up

Export Citation Format

Share Document