scholarly journals Interface between calcium silicate cement and adhesive systems according to adhesive families and cement maturation

2021 ◽  
Vol 46 ◽  
Author(s):  
Nelly Pradelle-Plasse ◽  
Caroline Mocquot ◽  
Katherine Semennikova ◽  
Pierre Colon ◽  
Brigitte Grosgogeat
Author(s):  
Mariano S. Pedano ◽  
Kumiko Yoshihara ◽  
Xin Li ◽  
Bernardo Camargo ◽  
Kirsten Van Landuyt ◽  
...  

2017 ◽  
Vol 116 (9) ◽  
pp. 679-688 ◽  
Author(s):  
Yuan-Chien Chen ◽  
Ming-You Shie ◽  
Yuan-Haw Andrew Wu ◽  
Kai-Xing Alvin Lee ◽  
Li-Ju Wei ◽  
...  

Biomatter ◽  
2011 ◽  
Vol 1 (1) ◽  
pp. 76-80 ◽  
Author(s):  
Cecilia Persson ◽  
Håkan Engqvist

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
S. Koubi ◽  
H. Elmerini ◽  
G. Koubi ◽  
H. Tassery ◽  
J. Camps

This study compared thein vitromarginal integrity of open-sandwich restorations based on aged calcium silicate cement versus resin-modified glass ionomer cement. Class II cavities were prepared on 30 extracted human third molars. These teeth were randomly assigned to two groups () to compare a new hydraulic calcium silicate cement designed for restorative dentistry (Biodentine, Septodont, Saint Maur des Fossés, France) with a resin-modified glass ionomer cement (Ionolux, Voco, Cuxhaven, Germany) in open-sandwich restorations covered with a light-cured composite. Positive () and negative () controls were included. The teeth simultaneously underwent thermocycling and mechanocycling using a fatigue cycling machine (1,440 cycles, 5–55°C; 86,400 cycles, 50 N/cm2). The specimens were then stored in phosphate-buffered saline to simulate aging. After 1 year, the teeth were submitted to glucose diffusion, and the resulting data were analyzed with a nonparametric Mann-Whitney test. The Biodentine group and the Ionolux group presented glucose concentrations of 0.074 ± 0.035 g/L and 0.080 ± 0.032 g/L, respectively. No statistically significant differences were detected between the two groups. Therefore, the calcium silicate-based material performs as well as the resin-modified glass ionomer cement in open-sandwich restorations.


2020 ◽  
Vol 117 ◽  
pp. 111297 ◽  
Author(s):  
I-Ting Wu ◽  
Pan-Fu Kao ◽  
Yun-Ru Huang ◽  
Shinn-Jyh Ding

2010 ◽  
Vol 150 ◽  
pp. 465-465
Author(s):  
Maria Giovanna Gandolfi ◽  
Andrea Colin ◽  
Giovanni Luca Acquaviva ◽  
Stefano Chersoni ◽  
Fabio Fava ◽  
...  

2019 ◽  
Vol 8 (9) ◽  
pp. 1440 ◽  
Author(s):  
Motoki Okamoto ◽  
Manahil Ali ◽  
Shungo Komichi ◽  
Masakatsu Watanabe ◽  
Hailing Huang ◽  
...  

The induction of tissue mineralization and the mechanism by which surface pre-reacted glass-ionomer (S-PRG) cement influences pulpal healing remain unclear. We evaluated S-PRG cement-induced tertiary dentin formation in vivo, and its effect on the pulp cell healing process in vitro. Induced tertiary dentin formation was evaluated with micro-computed tomography (μCT) and scanning electron microscopy (SEM). The distribution of elements from the S-PRG cement in pulpal tissue was confirmed by micro-X-ray fluorescence (μXRF). The effects of S-PRG cement on cytotoxicity, proliferation, formation of mineralized nodules, and gene expression in human dental pulp stem cells (hDPSCs) were assessed in vitro. μCT and SEM revealed that S-PRG induced tertiary dentin formation with similar characteristics to that induced by hydraulic calcium-silicate cement (ProRoot mineral trioxide aggregate (MTA)). μXRF showed Sr and Si ion transfer into pulpal tissue from S-PRG cement. Notably, S-PRG cement and MTA showed similar biocompatibility. A co-culture of hDPSCs and S-PRG discs promoted mineralized nodule formation on surrounding cells. Additionally, S-PRG cement regulated the expression of genes related to osteo/dentinogenic differentiation. MTA and S-PRG regulated gene expression in hDPSCs, but the patterns of regulation differed. S-PRG cement upregulated CXCL-12 and TGF-β1 gene expression. These findings showed that S-PRG and MTA exhibit similar effects on dental pulp through different mechanisms.


2013 ◽  
Vol 102 (7) ◽  
pp. 2295-2304 ◽  
Author(s):  
Tianxing Gong ◽  
Zhiqin Wang ◽  
Yubiao Zhang ◽  
Changshan Sun ◽  
Quanzu Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document