scholarly journals Experimental resin-modified calcium-silicate cement containing N-(2-hydroxyethyl) acrylamide monomer for pulp tissue engineering

Author(s):  
Mariano S. Pedano ◽  
Kumiko Yoshihara ◽  
Xin Li ◽  
Bernardo Camargo ◽  
Kirsten Van Landuyt ◽  
...  
2020 ◽  
Vol 36 (4) ◽  
pp. 512-526 ◽  
Author(s):  
Mariano Simón Pedano ◽  
Xin Li ◽  
Bernardo Camargo ◽  
Esther Hauben ◽  
Stéphanie De Vleeschauwer ◽  
...  

2017 ◽  
Vol 73 ◽  
pp. 230-236 ◽  
Author(s):  
Dimitrios Tziafas ◽  
Konstantinos Kodonas ◽  
Christos Gogos ◽  
Christina Tziafa ◽  
Seraphim Papadimitriou

2017 ◽  
Vol 116 (9) ◽  
pp. 679-688 ◽  
Author(s):  
Yuan-Chien Chen ◽  
Ming-You Shie ◽  
Yuan-Haw Andrew Wu ◽  
Kai-Xing Alvin Lee ◽  
Li-Ju Wei ◽  
...  

2016 ◽  
Vol 63 (4) ◽  
pp. 183-192 ◽  
Author(s):  
Marijana Popović Bajić ◽  
Violeta Petrović ◽  
Vanja Opačić Galić ◽  
Vesna Danilović ◽  
Vukoman Jokanović ◽  
...  

Summary Introduction Direct pulp capping is an important therapeutic method that has goal to provide formation of dentin bridge and healing process of the pulp. The aim of this study was to investigate the effects of new nanostructural materials based on calcium silicate systems and hydroxyapatite on exposed dental pulp in Vietnamese pigs. Material and Methods The study was conducted on 30 teeth of two Vietnamese pigs (Sus scrofa verus). On buccal surfaces of incisors, canines and first premolars, class V cavities were prepared with a small round bur and pulp horn was exposed. In the first experimental group (10 teeth) the perforation was covered with new nanostructural material based on calcium silicate systems (CS). In the second experimental group, the perforation was covered with compound of calcium silicate systems and hydroxyapatite (HA-CS) (10 teeth). In the control group, exposed pulp was covered with Pro Root MTA® (Dentsply Tulsa Dental, Johnson City, TN, USA) (10 teeth). All cavities were restored with glass ionomer cement (GC Fuji VIII, GC Corporation, Tokyo, Japan). Observation period was 28 days. After sacrificing the animals, histological preparations were done to analyze the presence of dentin bridge, inflammatory reaction of the pulp, pulp tissue reorganization and the presence of bacteria. Results Dentin bridge was observed in all teeth (experimental and control groups). Inflammation of the pulp was mild to moderate in all groups. Neoangiogenesis and many odontoblast like cells responsible for dentin bridge formation were detected. Necrosis was not observed in any case, neither the presence of Gram-positive bacteria in the pulp. Conclusion Histological analysis indicated favorable therapeutic effects of new nanostructural materials based on calcium silicate systems and hydroxyapatite for direct pulp capping in teeth of Vietnamese pigs.


Biomatter ◽  
2011 ◽  
Vol 1 (1) ◽  
pp. 76-80 ◽  
Author(s):  
Cecilia Persson ◽  
Håkan Engqvist

2014 ◽  
Vol 14 (04) ◽  
pp. 1450049 ◽  
Author(s):  
CIJUN SHUAI ◽  
ZHONGZHENG MAO ◽  
ZIKAI HAN ◽  
SHUPING PENG ◽  
ZHENG LI

Calcium silicate ( CaSiO 3) is a promising material due to its favorable biological properties. However, it was difficult to fabricate ceramic scaffolds with interconnected porous structure via conventional technology. In present study, CaSiO 3 scaffolds with totally interconnected pores were fabricated via selective laser sintering (SLS). The microstructure, mechanical and biological properties were examined. The results revealed that the powder gradually fused together with the reduction of voids and the elimination of particle boundary as the laser power increased in the range of 3–15 W with scanning electron microscope. Meanwhile the low-temperature phase (β- CaSiO 3) transformed into high-temperature phase (α- CaSiO 3) gradually, which decreased the mechanical properties of the obtained scaffolds. Besides, the compressive strength increased from 12.9 ± 2.34 MPa to 18.19 ± 1.24 MPa (the laser power is 12 w) and then decreased gradually with increasing laser power. In vitro biological properties of CaSiO 3 scaffolds sintered under optimal conditions indicated that the distribution of apatite mineralization became uniform as the amount of them increased after being immersed in simulated body fluids. In the meantime, the thin cytoplasmic extensions of MG-63 cells increased until formed a dense cell layer after 1–5 days of cell culture. The results suggested that the CaSiO 3 scaffold fabricated via SLS has potential application for bone tissue engineering.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
S. Koubi ◽  
H. Elmerini ◽  
G. Koubi ◽  
H. Tassery ◽  
J. Camps

This study compared thein vitromarginal integrity of open-sandwich restorations based on aged calcium silicate cement versus resin-modified glass ionomer cement. Class II cavities were prepared on 30 extracted human third molars. These teeth were randomly assigned to two groups () to compare a new hydraulic calcium silicate cement designed for restorative dentistry (Biodentine, Septodont, Saint Maur des Fossés, France) with a resin-modified glass ionomer cement (Ionolux, Voco, Cuxhaven, Germany) in open-sandwich restorations covered with a light-cured composite. Positive () and negative () controls were included. The teeth simultaneously underwent thermocycling and mechanocycling using a fatigue cycling machine (1,440 cycles, 5–55°C; 86,400 cycles, 50 N/cm2). The specimens were then stored in phosphate-buffered saline to simulate aging. After 1 year, the teeth were submitted to glucose diffusion, and the resulting data were analyzed with a nonparametric Mann-Whitney test. The Biodentine group and the Ionolux group presented glucose concentrations of 0.074 ± 0.035 g/L and 0.080 ± 0.032 g/L, respectively. No statistically significant differences were detected between the two groups. Therefore, the calcium silicate-based material performs as well as the resin-modified glass ionomer cement in open-sandwich restorations.


2020 ◽  
Vol 117 ◽  
pp. 111297 ◽  
Author(s):  
I-Ting Wu ◽  
Pan-Fu Kao ◽  
Yun-Ru Huang ◽  
Shinn-Jyh Ding

2010 ◽  
Vol 150 ◽  
pp. 465-465
Author(s):  
Maria Giovanna Gandolfi ◽  
Andrea Colin ◽  
Giovanni Luca Acquaviva ◽  
Stefano Chersoni ◽  
Fabio Fava ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document