In vitro and in vivo osteogenesis of gelatin-modified calcium silicate cement with washout resistance

2020 ◽  
Vol 117 ◽  
pp. 111297 ◽  
Author(s):  
I-Ting Wu ◽  
Pan-Fu Kao ◽  
Yun-Ru Huang ◽  
Shinn-Jyh Ding
Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 203 ◽  
Author(s):  
Chun-Hao Tsai ◽  
Chih-Hung Hung ◽  
Che-Nan Kuo ◽  
Cheng-Yu Chen ◽  
Yu-Ning Peng ◽  
...  

Recently, cases of bone defects have been increasing incrementally. Thus, repair or replacement of bone defects is gradually becoming a huge problem for orthopaedic surgeons. Three-dimensional (3D) scaffolds have since emerged as a potential candidate for bone replacement, of which titanium (Ti) alloys are one of the most promising candidates among the metal alloys due to their low cytotoxicity and mechanical properties. However, bioactivity remains a problem for metal alloys, which can be enhanced using simple immersion techniques to coat bioactive compounds onto the surface of Ti–6Al–4V scaffolds. In our study, we fabricated magnesium-calcium silicate (Mg–CS) and chitosan (CH) compounds onto Ti–6Al–4V scaffolds. Characterization of these surface-modified scaffolds involved an assessment of physicochemical properties as well as mechanical testing. Adhesion, proliferation, and growth of human Wharton’s Jelly mesenchymal stem cells (WJMSCs) were assessed in vitro. In addition, the cell attachment morphology was examined using scanning electron microscopy to assess adhesion qualities. Osteogenic and mineralization assays were conducted to assess osteogenic expression. In conclusion, the Mg–CS/CH coated Ti–6Al–4V scaffolds were able to exhibit and retain pore sizes and their original morphologies and architectures, which significantly affected subsequent hard tissue regeneration. In addition, the surface was shown to be hydrophilic after modification and showed mechanical strength comparable to natural bone. Not only were our modified scaffolds able to match the mechanical properties of natural bone, it was also found that such modifications enhanced cellular behavior such as adhesion, proliferation, and differentiation, which led to enhanced osteogenesis and mineralization downstream. In vivo results indicated that Mg–CS/CH coated Ti–6Al–4V enhances the bone regeneration and ingrowth at the critical size bone defects of rabbits. These results indicated that the proposed Mg–CS/CH coated Ti–6Al–4V scaffolds exhibited a favorable, inducive micro-environment that could serve as a promising modification for future bone tissue engineering scaffolds.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
S. Koubi ◽  
H. Elmerini ◽  
G. Koubi ◽  
H. Tassery ◽  
J. Camps

This study compared thein vitromarginal integrity of open-sandwich restorations based on aged calcium silicate cement versus resin-modified glass ionomer cement. Class II cavities were prepared on 30 extracted human third molars. These teeth were randomly assigned to two groups () to compare a new hydraulic calcium silicate cement designed for restorative dentistry (Biodentine, Septodont, Saint Maur des Fossés, France) with a resin-modified glass ionomer cement (Ionolux, Voco, Cuxhaven, Germany) in open-sandwich restorations covered with a light-cured composite. Positive () and negative () controls were included. The teeth simultaneously underwent thermocycling and mechanocycling using a fatigue cycling machine (1,440 cycles, 5–55°C; 86,400 cycles, 50 N/cm2). The specimens were then stored in phosphate-buffered saline to simulate aging. After 1 year, the teeth were submitted to glucose diffusion, and the resulting data were analyzed with a nonparametric Mann-Whitney test. The Biodentine group and the Ionolux group presented glucose concentrations of 0.074 ± 0.035 g/L and 0.080 ± 0.032 g/L, respectively. No statistically significant differences were detected between the two groups. Therefore, the calcium silicate-based material performs as well as the resin-modified glass ionomer cement in open-sandwich restorations.


2019 ◽  
Vol 8 (9) ◽  
pp. 1440 ◽  
Author(s):  
Motoki Okamoto ◽  
Manahil Ali ◽  
Shungo Komichi ◽  
Masakatsu Watanabe ◽  
Hailing Huang ◽  
...  

The induction of tissue mineralization and the mechanism by which surface pre-reacted glass-ionomer (S-PRG) cement influences pulpal healing remain unclear. We evaluated S-PRG cement-induced tertiary dentin formation in vivo, and its effect on the pulp cell healing process in vitro. Induced tertiary dentin formation was evaluated with micro-computed tomography (μCT) and scanning electron microscopy (SEM). The distribution of elements from the S-PRG cement in pulpal tissue was confirmed by micro-X-ray fluorescence (μXRF). The effects of S-PRG cement on cytotoxicity, proliferation, formation of mineralized nodules, and gene expression in human dental pulp stem cells (hDPSCs) were assessed in vitro. μCT and SEM revealed that S-PRG induced tertiary dentin formation with similar characteristics to that induced by hydraulic calcium-silicate cement (ProRoot mineral trioxide aggregate (MTA)). μXRF showed Sr and Si ion transfer into pulpal tissue from S-PRG cement. Notably, S-PRG cement and MTA showed similar biocompatibility. A co-culture of hDPSCs and S-PRG discs promoted mineralized nodule formation on surrounding cells. Additionally, S-PRG cement regulated the expression of genes related to osteo/dentinogenic differentiation. MTA and S-PRG regulated gene expression in hDPSCs, but the patterns of regulation differed. S-PRG cement upregulated CXCL-12 and TGF-β1 gene expression. These findings showed that S-PRG and MTA exhibit similar effects on dental pulp through different mechanisms.


2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Eun-Su Lim ◽  
Young-Bae Park ◽  
Young-Sun Kwon ◽  
Won-Jun Shon ◽  
Kwang-Won Lee ◽  
...  

2020 ◽  
Vol 36 (4) ◽  
pp. 512-526 ◽  
Author(s):  
Mariano Simón Pedano ◽  
Xin Li ◽  
Bernardo Camargo ◽  
Esther Hauben ◽  
Stéphanie De Vleeschauwer ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Naji Ziad Arandi ◽  
Tarek Rabi

Background. Direct pulp capping is a popular treatment modality among dentists. TheraCal LC is a calcium silicate-based material that is designed as a direct/indirect pulp capping material. The material might be very attractive for clinicians because of its ease of handling. Unlike other calcium silicate-based materials, TheraCal LC is resin-based and does not require any conditioning of the dentine surface. The material can be bonded with different types of adhesives directly after application. There has been considerable research performed on this material since its launching; however, there are no review articles that collates information and data obtained from these studies. This review discusses the various characteristics of the material with the aim of establishing a better understanding for its clinical use. Methods. A search was conducted using search engines (PubMed and Cochrane databases) in addition to reference mining of the articles that was used to locate other papers. The process of searching for the relevant studies was performed using the keywords pulp protection, pulp capping, TheraCal, and calcium silicates. Only articles in English published in peer-reviewed journals were included in the review. Conclusion. This review underlines the fact that further in vitro and in vivo studies are required before TheraCal LC can be used as a direct pulp capping material.


2006 ◽  
Vol 309-311 ◽  
pp. 829-832 ◽  
Author(s):  
Hakan Engqvist ◽  
S. Edlund ◽  
Gunilla Gómez-Ortega ◽  
Jesper Lööf ◽  
Leif Hermansson

The objective of the paper is to investigate the mechanical and the handling properties of a novel injectable bone void filler based on calcium silicate. The orthopaedic cement based on calcium silicate was compared to a calcium phosphate cement, Norian SRS from Syntes Stratec, with regard to the working (ejection through 14 G needle) and setting time (Gillmore needles), Young’s modulus and the flexural (ASTM F-394) and compressive (ISO 9917) strength after storage in phosphate buffer saline at body temperature for time points from 1h up to 16 weeks. The calcium silicate cement is composed of a calcium silicate powder (grain size below 20 µm) that is mixed with a liquid (water and CaCl2) into a paste using a spatula and a mixing cup. The water to cement ratio used was about 0.5. The calcium silicate had a working time of 15 minutes and a setting time of 17 minutes compared to 5 and 10 minutes respectively for the calcium phosphate cement. The compressive strength was considerably higher for the calcium silicate cement (>100 MPa) compared to the calcium phosphate cement (>40 MPa). Regarding the flexural strength the calcium silicate cement had high values for up to 1 week (> 40 MPa) but it decreased to 25 MPa after 16 weeks. The phosphate cement had a constant flexural strength of about 25 MPa. The results show that calcium silicate cement has the mechanical and handling potential to be used as high strength bone void filler.


Sign in / Sign up

Export Citation Format

Share Document